COMMUTATIVE CODENSITY MONADS AND PROBABILITY BIMEASURES

ZEV SHIRAZI

1. Background

If $K: \mathcal{D} \to \mathcal{C}$ is any functor, then if the right Kan extension $\operatorname{Ran}_K K$ exists, it has a monad structure which is called the *codensity monad* of K. It was shown in [2] that several probability monads have presentations as pointwise codensity monads of functors from a small category of stochastic maps. More explicitly, we use the following four probability monads as examples:

- (1) The Giry monad \mathcal{G} on the category **Meas** of measurable spaces and measurable maps is the codensity monad of $K_{\mathcal{G}}: \mathbf{cStoch} \to \mathbf{Meas}$
- (2) The countable expectation monad \mathbb{E} on **Set** is the codensity monad of $K_{\mathbb{E}} : \mathbf{cStoch} \to \mathbf{Set}$
- (3) The Radon monad \mathcal{R} on the category **KHaus** of compact Haudorff spaces and continuous maps is the codensity monad of $K_{\mathcal{R}}$: **FinStoch** \rightarrow **KHaus**
- (4) The Kantorovich monad \mathcal{K} on the category **KMet** of compact metric spaces and 1-Lipschitz maps is the codensity monad of $K_{\mathcal{K}}$: **FinStoch** \rightarrow **Meas**

Where **cStoch** (resp. **FinStoch**) is the category of countable (resp. finite) sets and random functions between them. We give the interpretation that a functor $K_P: \mathbf{cStoch} \to \mathcal{C}$ defines a model of discrete probability in \mathcal{C} , and so its codensity monad P has a universal property as the largest extension of this model of discrete probability admissible in \mathcal{C} . We prove several properties of codensity monads, with the aim of exhibiting these properties in our examples. For example, if \mathbb{T} is a monad on a category \mathcal{C} with a terminal object 1 and coproducts, there is a monad structure on T(1 + -) which can be viewed as combining the computational effect modelled by T with possible errors. For a probability monad P, a Kleisli morphism of $X \to P(1 + Y)$ is a stochastic map $X \to Y$ with a probability of failure $p(\perp)$. If \mathbb{T} is the pointwise codensity monad of K, then we are able to give conditions on Kunder which we also have a presentation $T(1 + -) = \operatorname{Ran}_K K(1 + -)$.

2. Commutativity of codensity monads

Motivated by the commutativity of probabilistic effects, we give a description of when codensity monads are commutative. It is a standard result, from [1], that commutative monads coincide with lax monoidal monads, and so we give general conditions for when codensity monads can be lifted to **MonCat**. We show that the condition $P(A \otimes B) = \lim_{(A \downarrow K_P) \times (B \downarrow K_P)} K_P(U_A \otimes U_B)$ is sufficient for our examples of probability monads P. Motivated by the theory of algebraic Kan extensions (see for example [4]), we call a codensity monad that satisfies the k-arity generalisation of this condition an *exactly pointwise monoidal* codensity monad. We characterise these as the monoidal codensity monads that factorise through $[\mathcal{D}, \mathbf{Set}]^{\mathrm{op}}$ in **Mon-Cat** in a manner analogous to the factorisation of pointwise codensity monads in **Cat**. This also gives a description of the monoidal product in the Kleisli category of these monads in terms of Day convolution. For our examples, we show that $\lim_{\prod_{i=1}^{k} (A_i \downarrow K_P)} K_P(\bigotimes_{i=1}^{k} U_{A_i})$ is the space of *probability k-polymeasures*, and hence that \mathcal{R} , and the restriction of \mathcal{G} to standard Borel spaces are exactly pointwise monoidal, but that our other examples are not.

ZEV SHIRAZI

We then introduce the notion of a *-monad, which behaves like a monad of several variables, and organises the categorical structure of the spaces of probability k-polymeasures. A *-monad is a structure that *lives in between* ordinary monads and commutative monads, and it acts on lists of objects and morphisms, i.e. there is an assignment $[a_1, ..., a_k] \mapsto T[a_1, ..., a_k]$. We provide a definition of a monoidal op-multicategory, and show that this is the structure of the Kleisli morphisms $Y \to$ $T[X_1, ..., X_k]$ of a *-monad T. Finally, we show that similarly to how any functor $K: \mathcal{D} \to \mathcal{C}$ from a small category \mathcal{D} to a complete category \mathcal{C} has a codensity monad T, any such lax monoidal functor K has a codensity *-monad. For example the spaces of probability k-polymeasures form the codensity *-monad of $K_{\mathcal{G}}$, defining a monoidal op-multicategory of generalised stochastic maps.

3. Universal properties of probability monads

If \mathbb{T} is a monad on \mathcal{E} and $H: \mathcal{C} \to \mathcal{E}$, then if the right Kan lift $\operatorname{Rift}_H TH$ exists, it has a monad structure and additionally has a universal property as a lifting of \mathbb{T} to \mathcal{E} . We show that our examples of probability monads have a related universal property as a lifting of \mathcal{G} , which generalises a result in [3], and we also show how it emerges from their codensity presentations. This gives a new connection between the measure theoretic definitions of these probability monads and their definitions as extensions of discrete probability. More explicitly, $\operatorname{Rift}_H TH$ is the terminal object of the category $(H_* \downarrow TH)$ whose objects (S, α) consist of an endofunctor S on \mathcal{D} and a natural transformation $\alpha: HS \to TH$. Whenever \mathbb{T} is a monad, $(H_* \downarrow TH)$ has a monoidal category structure such that monoids in $(H_* \downarrow TH)$ correspond to monads S on C admitting a Kleisli law to T, i.e. a natural transformation $HS \rightarrow$ TH preserving the monad structure. Now if C is a category with a probability monad P then we might expect that there is a faithful functor $H: \mathcal{C} \to \mathbf{Meas}$ which assigns a measurable structure to objects of \mathcal{C} . Objects in $(H_* \downarrow \mathcal{G}H)$ can be interpreted as endofunctors of probability measures on \mathcal{C} and the terminal object of a full monoidal subcategory of $(H_* \downarrow \mathcal{G}H)$ can be viewed as a maximal monad of probability measures. This idea was suggested by Van Breugel in [3], which introduced the monad \mathcal{K} and showed it was the terminal object in a subcategory of $(H_* \downarrow \mathcal{G}H)$ for a suitable H. If $K_P \colon \mathbf{Stoch}_{\omega_1} \to \mathcal{C}$ additionally gives a model of discrete probability in $\mathcal C$ which is compatible with the measurable structure defined by H, then the codensity monad of K_P also has a universal property as a maximal probability monad in \mathcal{C} . We show that these two notions coincide when H and K_P satisfy certain compatibility conditions; a central condition being that $TH = \operatorname{Ran}_{K_P} K_T$. In particular we generalise Proosition 23 in [3] by showing that \mathcal{K} is terminal in a larger monoidal subcategory of $(H_* \downarrow \mathcal{G}H)$, and we provide an analogous result for \mathcal{R} , giving a novel characterisation of this monad.

References

- Anders Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23(1):113–120, 1972.
- [2] Ruben Van Belle. Probability monads as codensity monads. Theory and Applications of Categories, 38(21):811–842, 2022.
- [3] Franck van Breugel. The Metric Monad for Probabilistic Nondeterminism. Draft available at http://www.cse.yorku.ca/%7Efranck/research/drafts/monad.pdf, 2005.
- Mark Weber. Algebraic Kan extensions along morphisms of internal algebra classifiers. Tbilisi Mathematical Journal, 9(1):65-142, 2016.