
Submitted to:
MSFP 2024

© E. Rivas
This work is licensed under the
Creative Commons Attribution License.

Procontainers for idioms, arrows and monads

Exequiel Rivas
Tallinn University of Technology, Tallinn, Estonia

exequiel.rivas@taltech.ee

Containers, or polynomial functors, are a popular class of functors that is closed under a variety of
operations, including coproducts, products, Day convolution and composition. Idioms and monads,
two extremely successful interfaces for capturing computational effects in functional languages, are
based on these last two operations between functors. However, a third popular interface of com-
putational effects is missing from the picture: arrows, which are usually understood in terms of
profunctors instead of functors. In this article we introduce a notion of procontainer, which is a class
of profunctors also closed under the operations of interest. We demonstrate how this notion allows
us to express the well-known connections between these three different interfaces for computational
effects, when restricted to containers.

1 Introduction

The motivation for this work comes from the relation between functors and profunctors that appeared
in functional programming, in particular, in the treatment of computational effects. The most notable
interfaces for expressing computational effects inside a functional programming language are monads,
idioms (or applicative functors), and arrows. Some years ago, Lindley, Yallop and Wadler [10] provided
a detailed study of the expressive power relating these three interfaces by syntactical means. Their results
can be summed up with a diagram

Idioms � � // Arrows � � // Monads

together with the equations

Idiom = Arrow+(A⇝ B∼= 1⇝ (A→ B)), (1)

Monad = Arrow+(A⇝ B∼= A→ (1⇝ B)). (2)

stating that monads and idioms are special cases of arrows that satisfy particular equations. Some years
after, Rivas [18] showed the same results in a more semantical way, by using the fact that these three
interfaces are built on categorical concepts, the first two on top of the notion of functor, and arrows
built on top of profunctors (or more precisely, strong profunctors). This work, however, is done by
restricting to functors in the categories [F,Set] and [Fop×F,Set]s, where F represents the category of
finite sets. The maps corresponding to the diagram above are obtained by involved formulas in terms of
ends and coends. Instead, we might consider exploring what happens when we restrict ourselves to other
families of functors, which could potentially offer simpler terms for expressing the mappings between
interfaces. One such class of functors that meets these criteria is known as containers, and this paper is
a development from this motivation.

In the rest of this section, in order to explain our proposal and present contributions, we give an
overview of these interfaces and a brief description of containers (which is expanded later in Section 2)

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Procontainers for idioms, arrows and monads

1.1 Computational effects

Naively, a computer program is like a mathematical function: it takes some input, and returns some
output, it is a functional relation. However, computers can do much more. Computational effects refer
to the “things” that a program can do. For example, a computer program can print to a terminal, or read
from an Internet socket, or behave non-deterministically depending on some external decision. When
studying semantics of computer programs, we need to model these effects, and different mathematical
structures have emerged to explain them. At the same time, these mathematical structures provide the
functional programmer with an interface to express effects and structure code, and this is why they have
been popularized in the functional programming community. Three such interfaces are those that interest
us in this work: monads, idioms (or applicative functors), and arrows.

When presenting mathematical concepts, we will restrict ourselves to the case that the ambient cat-
egory is Set. We use Agda to express how the interfaces could look inside a programming language,
and we will not represent here the equational laws (as in programming languages like Haskell or OCaml,
these cannot be normally expressed. Our presentation is similar to Agda standard library’s raw versions).

Originally, monads were used by Moggi [12, 13] for capturing the semantics of programming lan-
guages with effects, and not much after, Wadler [22] observed that effectful functional programs could be
structured following an interface provided by modeling a monad inside the language. This construction
builds on the notion of functor, so we begin by representing a functor in Agda as a record

record Functor (F : Set → Set) : Set1 where
field map : ∀ {X Y : Set} → (X → Y) → F X → F Y

denoting a functorial action for a type constructor. For a monad, we extend this record with two poly-
morphic functions which capture the monad structure:

record Monad F {{_ : Functor F}} : Set1 where
field η : ∀ {A : Set} → A → F A
μ : ∀ {A : Set} → F (F A) → F A

open Functor {{...}} public
〉〉= : ∀ {A B} → F A → (A → F B) → F B
〉〉= v f = μ (map f v)

Under the interpretation that FX represents computations of type X , η is used to lift (pure) values to
computations, and µ is used to compose computations, although in practice generally the equivalent
combinator 〉〉= is used.

Some years later, McBride and Patterson [11] introduced idioms as another interface which can help
to capture computational effects, where this time computations cannot depend on previous results. As
with a monad, we have a functor F , together with functions:

record Idiom F {{_ : Functor F}} : Set1 where
field pure : ∀ {X : Set} → X → F X

app : ∀ {X Y : Set} → F (X → Y) → F X → F Y
open Functor {{...}} public
∥ : ∀ {A B} → F A → F B → F (A × B)
v ∥ w = app (map _,_ v) w

Now pure values are lifted to computations using pure, and computations are combined using app. Cat-
egorically speaking, idioms are characterized as (strong) lax monoidal functors, where we can derive
monoidality as in ∥.

E. Rivas 3

In between monads and idioms, Hughes [7] introduced another interface for expressing computa-
tions, aiming to generalize monads. However, this time, it was not assumed that we had a functor, but
instead a type constructor which would take two parameters and act contravariantly/covariantly on each
of them, which is captured in the notion of profunctor:

record Profunctor (P : Set → Set → Set) : Set1 where
field dimap : ∀ {X Y C D} → (Y → X) → (C → D) → P X C → P Y D

This record captures what in category theory would be a profunctor Set ↛ Set, i.e. a functor Setop×
Set→ Set. The structure introduced by Hughes to capture effects is called arrow, and these endow a
profunctor with the following interface combinators that allow to combine computations:

record Arrow P {{_ : Profunctor P}} : Set1 where
field arr : ∀ {X Y : Set} → (X → Y) → P X Y

≫ : ∀ {X Y Z : Set} → P X Y → P Y Z → P X Z
first : ∀ {X Y Z : Set} → P X Y → P (X × Z) (Y × Z)

The intuition is that a term c : P X Y is a computation with input X and output Y . Trivial computations
are pure functions obtained using arr. Computations can be sequencialized using≫, and we can pass
around unmodified data using first.

As these interfaces were introduced, the differences between them were studied. An immediate fact
is that both monads and idioms can be turned into arrows. To see this, we can see two ways in which a
functor can be turned into a profunctor:

Kleisli : (Set → Set) → Set → Set → Set
Kleisli F X Y = X → F Y

instance Kleisli-profunctor : ∀ {F} {{_ : Functor F}} → Profunctor (Kleisli F)

and

Cayley : (Set → Set) → Set → Set → Set
Cayley F X Y = F (X → Y)

instance Cayley-profunctor : ∀ {F} {{_ : Functor F}} → Profunctor (Cayley F)

Then, instances translating a monad to an arrow and an idiom to an arrow are:

instance
Kleisli-monad : ∀ {F} {{_ : Functor F}} {{_ : Monad F}} → Arrow _ {{Kleisli-profunctor}}
Kleisli-monad = let open Monad {{...}} in

record { arr = λ f x → η (f x) ;
≫ = λ f g x → μ (map g (f x)) ;
first = λ { f (x , z) → map (λ y → y , z) (f x) } }

instance
Cayley-idiom : ∀ {F} {{_ : Functor F}} {{_ : Idiom F}} → Arrow _ {{Cayley-profunctor}}
Cayley-idiom = let open Idiom {{...}} in

record { arr = pure ;
≫ = λ v → app (map (λ f g x → g (f x)) v) ;
first = λ { v → map (λ { f (x , z) → f x , z }) v } }

These transformations will guide our development of a notion of procontainers.

4 Procontainers for idioms, arrows and monads

1.2 Containers

In computer science, containers [1] were introduced in the quest for a characterization of data-types that
is closed under certain usual operations. The idea is that such data-type constructors can be provided
giving: a set of shapes, and a position function that assigns a set to each shape. A typical example of
a container is the list functor, in which we take N as the set of shapes (“a list of length ...”), and for
each shape n : N, the positions are the finite sets {0, . . . ,n− 1} (each list of length n has n positions,
corresponding to its elements). On the mathematical side, containers were treated extensively, named
polynomial functors, and a number of connections to different concepts in mathematics such as operads
were made [9, 5], recently capturing the attention of the applied category theory school [19].

Both monads and idioms have a functor in its underlying construction, and we can wonder when this
functor is a container. Indeed, monads and idioms can be seen as monoids under operations closed in
containers.

1.3 Our proposal

How do arrows fit in the picture when we restrict computational effects to containers? As explained
before, arrows build on profunctors instead of functors, so a natural point of departure is to wonder what
would be an appropriate notion of polynomial profunctor, or as we will call them, procontainer. After
we have such a notion, how do the transformations we saw between monads, idioms and arrows work
between containers and procontainers? We will explore these points in the article.

We will give a type theory representation of the concepts using Agda (in the spirit of containers),
but also a mathematical presentation of some of these concepts as well (in the spirit of the polynomial
functors as bundles). We will work with the category of sets and functions, which we denote as Set.

The rest of the article is structured as follows. In Section 2, we do a review on containers, while
in Section 3 we present a definition for procontainers. Later, in Section 4, we show how some pro-
containers operations can be defined. In Section 5, we highlight some relations between containers and
procontainers, highlighting the parallel with the transformations seen in this introduction, and see a sim-
ilar pattern for Dirichlet functors in Section 6. In Section 7, we propose some discussion about possible
generalizations, as well as limitations of our proposed notion of procontainer. Finally, in Section 8, we
conclude.

1.4 Contributions

We highlight the major contributions of this article:

1. We introduce a definition of procontainers, both in Agda code and in mathematical terms as com-
posable morphisms in the category Set;

2. We show that procontainers are closed under operations of interest, particularly that of Bénabou’s
tensor (horizontal composition of profunctors);

3. We demonstrate how procontainers are related to containers (and Dirichlet functors), obtaining
particular cases of results known for computational effects.

E. Rivas 5

2 Containers, or polynomial functors

A (non-indexed) polynomial diagram is a morphism in Set

E
p // B

seen as a bundle. We see the object B as an object of shapes, and each fiber Eb is seen as the positions
corresponding to the shape b. We will also provide an Agda version of the constructions, which allows
us to stay closer to type theory, the setting where much of the container theory have been developed. For
Agda, we can take a more direct approach, and directly encode a container as a set of shapes together
with a function assigning to each shape a set of positions:

record Container : Set1 where
constructor _▷_
field Shape : Set

Position : Shape → Set

Containers can be realized as functors, which we code with the help of the Σ-types former Σ:

J_KC : Container → Set → Set
J S ▷ P KC Y = Σ[s ∈ S] (P s → Y)

As this is a functor, we also need to describe what is the action on maps, but this is straightforward:

mapC : ∀ {C : Container} {X Y : Set} → (X → Y) → J C KC X → J C KC Y
mapC f (s , k) = s , (λ x → f (k x))

Mathematically, we can write this realization as a composition of functors:

Set
∆!E // Set/E

Πp // Set/B
Σ!B // Set

Here, !A : A→ 1 denotes the unique morphism from A to the terminal object, and, given a function
f : A→ B, the functor ∆ f : Set/B→ Set/A applied on an object h : X → B of the slice Set/B is the
pullback on Figure 1a. For each f : A→ B, we have that Σ f ⊣ ∆ f for Σ f (g : X → A) = f ◦g. In addition,
∆ f has a right adjoint Π f , which is equivalent to the fact that Set is a locally Cartesian closed category
(LCCC).

The morphisms between containers are defined as follows, where shapes are mapped in a forward
direction, while positions are mapped in a backward direction:

f ∗X //

∆ f (h)
��

X

h
��

A
f
// B

E1

q1

��

B1×B2 E2 //

��

poo E2

q2

��
B1 B1 s

// B2

Figure 1: (a) Pullback defining ∆ f . (b) Container morphism.

6 Procontainers for idioms, arrows and monads

record _⇒C_ (C1 : Container) (C2 : Container) : Set where
constructor _▷_
field shapemap : Shape C1 → Shape C2

positionmap : ∀ s → Position C2 (shapemap s) → Position C1 s

Just as containers can be realized as functors, the morphisms between containers can be realized as
natural transformation between the corresponding realized functors:

⟨⟨_⟩⟩C : ∀ {C1 C2} (f : C1⇒C C2) → ∀ {X} → J C1 KC X → J C2 KC X
⟨⟨_⟩⟩C (sm ▷ pm) = λ { (s , k) → sm s , λ x → k (pm s x) }

In terms of bundles, a morphism from q1 : E1→ B1 to q2 : E2→ B2 is given by the data (s, p) such that
the diagram in Figure 1b commutes.

Interestingly, there is an alternative realization of a container as a functor. Spivak and Myers have
studied these under the name of Dirichlet functors [14]. Renaming containers to Dirichlet,

Dirichlet = Container

we can show how they are realized as contravariant functors:

J_KD : Dirichlet → Set → Set
J S ▷ P KD Y = Σ[s ∈ S] (Y → P s)

We can think of this realization as a sum of contravariant representables. In the code definition above,
the contravariance aspect is not visible. We see contravariance in its action on maps:

mapD : ∀ {D : Dirichlet} {X Y : Set} → (X → Y) → J D KD Y → J D KD X
mapD f (s , k) = s , (λ x → k (f x))

When we consider this construction in a fiberwise manner, we can see that now the realization is as
follows:

Setop
∆

op
!B // (Set/B)op [−,p]/B // Set/B

Σ!B // Set

where [−,+]/B is the internal hom for the slice category Set/B (guaranteed to exist as Set is an LCCC).
This alternative realization comes paired together with an alternative notion of morphism between

containers, which works in a forward direction for the positions:

record _⇒D_ (D1 : Dirichlet) (D2 : Dirichlet) : Set where
constructor _▷_
field shapemap : Shape D1 → Shape D2

positionmap : ∀ {s} → Position D1 s → Position D2 (shapemap s)

These morphisms are sometimes called charts. In terms of bundles, a morphism from q1 : E1 → B1 to
q2 : E2 → B2 is given by maps (s, p) making the regular diagram commute: s · q1 = q2 · p. This view
gives a characterization of the category of Dirichlet functors as the category of arrows on Set [14].

E. Rivas 7

2.0.1 Operations on containers

An interesting property of containers is that they are closed under multiple operations such as products,
coproducts, composition, Day convolution, etc. In this article we will focus in two of them: composition
and Day convolution.

Since containers are realized as endofunctors Set→ Set, which we can compose, a natural operation
to perform between two containers is to compose them, which is defined for containers as:

(S ▷ P) ◦C (T ▷ Q) = J (S ▷ P) KC T ▷ λ { (s , v) → Σ[p ∈ P s] Q (v p) }

Naturally, we have that the realization of composition of containers is the composition of the realizations.
Together with the identity container, Id = 1▷λ_.1, composition forms a monoidal structure on Cont. An
interesting point is that the monoids for this monoidal structure are realized as monads.

Another interesting operation to perform between containers is given by Day convolution. We can
define it as follows:

(S ▷ P) ⋆C (T ▷ Q) = (S × T) ▷ λ { (s , t) → P s × Q t }

Here, the convolution is performed with respect to products in the category Set. More generally, for any
symmetric monoidal product on Set, there is a corresponding symmetric monoidal structure on Cont
(see [20]). Again, Day convolution together with the identity container form a monoidal structure on
Cont, and monoids for this monoidal structure endow functors realizing the underlying containers of
monoids with the structure of a lax monoidal functor, i.e. an idiom.

3 Procontainers, or polynomial profunctors

We now move to the definition of procontainers. As we remarked in the introduction, our inspiration for
this is to look into the transformations between functors and profunctors used in functional programming.
There are in principle many options for doing this, we pick a particular one because the closure operations
(Section 4) and its connection to containers (Section 5), we discuss some of the consequences of this
choice later in Section 7.

We will define procontainers using the following record:

record ProContainer : Set1 where
constructor _▷_▷_
field Shape : Set

Position+ : Shape → Set
Position− : (s : Shape) → (s+ : Position+ s) → Set

As before, there are a number of possible shapes, but now for each shape, instead of having a single set,
we will now have an indexed set, which is represented by a set of indices and a set for each element in
that index. It is important now to see what is the interpretation we have in mind for this data. For that,
we show how to realize a procontainer as a profunctor. The first step is to show its action on objects:

J_K : ProContainer → Set → Set → Set
J S ▷ P+ ▷ P− K X Y = Σ[s ∈ S] (X → Σ[p+ ∈ P+ s] (P− s p+ → Y))

This interpretation will be contravariant in the first argument, and covariant in the second one. This can
be seen in its realization as natural transformations in two arguments:

8 Procontainers for idioms, arrows and monads

map : ∀ {PC} {X X’} {Y Y’} →
(X’ → X) → (Y → Y’) → J PC K X Y → J PC K X’ Y’

map f g (t , h) = t , λ x’ → (proj1 (h (f x’))) , λ z → g (proj2 (h (f x’)) z)

The bundle point of view can be captured as follows. A polynomial profunctor diagram is

F
q // E

p // B

Informally, we will call the morphism q the head, and p the tail. From the bundles point of view, we
can construct the profunctor as follows, which is a combination of a Dirichlet functor and container
representation:

Setop×Set
id×∆!F // Setop×Set/F

id×Πq // Setop×Set/E
id×Σp// Setop×Set/B

∆
op
!B
×id

// (Set/B)op×Set/B
[−,+]/B // Set/B

Σ!B // Set

A profunctor can come with a strength, which is the generalization of strength of a functor. While
every functor on Set comes with a unique strength, not every profunctor on Set comes with a strength.
However, the realization of a procontainer comes with a canonical strength, as the following shows

strength : ∀ {PC} {X Y Z} → J PC K X Y → J PC K (X × Z) (Y × Z)
strength (t , h) = t , λ { (x , z) → (proj1 (h x)) , λ p → (proj2 (h x) p) , z }

which satisfies the axioms of a strong profunctor as postulated by Paré and Román [15]. Moreover, this
strength is not only canonical, but also unique for the procontainer realization. An important point here is
to see that in the realization of a procontainer, we have that the contravariant argument is used linearly, so
there is no choice for the Z in the output for a strength, it must come from the only occurrence provided
as input.

Example 1 The most basic example we can give of a procontainer is the hom-set profunctor on Set,
which we can obtain by letting shapes and (both) positions of the procontainer to be unit types: Hom =
⊤ ▷ (λ { tt → ⊤ }) ▷ λ { tt tt → ⊤ } where ⊤ represents the unit type whose unique inhabitant is tt, i.e.
the terminal object in Set, 1 = {∗}. This corresponds to 1−→ 1−→ 1 as a bundle.

Example 2 For any set N, the constant profunctor P(X ,Y) = N, it can be encoded as a procontainer
0−→ N −→ N.

Example 3 In the context of arrow handlers, Pieters et al. [17] consider profunctors of the form P(X ,Y)=
S×X ⇒ (D× (N⇒ Y)) for sets S, D, and N. One can think of these profunctors as encoding the signa-
ture of an operation that has some static input S and some dynamic input D. They can be expressed as a
procontainer S ▷ (λ { _ → D }) ▷ (λ { _ _ → N }) .

Example 4 A similar example is given by a signature made of operations op : δ ⇝ γ , where δ and γ are
the arities (sets) of the operation. When we model the signature with a set Σ of operations, and function
src and dst mapping to coarities and arities respectively, we can capture it using the procontainer Σ ▷ (λ
{ op → src op }) ▷ (λ { op _ → dst op }) .

E. Rivas 9

3.1 Procontainer morphisms

To define morphisms between procontainers, we take as a reference point natural transformations be-
tween the realizations of them. Given two procontainers S ▷P+ ▷P− and T ▷Q+ ▷Q−, a natural trans-
formation from the realization of S ▷P+ ▷P− to the realization of T ▷Q+ ▷Q− is a natural family of
morphisms

αX ,Y : ∑
s∈S

(
X ⇒ ∑

p+∈P+(s)
P−(s, p+)⇒ Y

)
−→ ∑

t∈T

(
X ⇒ ∑

q+∈Q+(t)
Q−(t,q+)⇒ Y

)

This is equivalent to having a family of natural transformations indexed by S

αs,X ,Y :

(
X ⇒ ∑

p+∈P+(s)
P−(s, p+)⇒ Y

)
−→ ∑

t∈T

(
X ⇒ ∑

q+∈Q+(t)
Q−(t,q+)⇒ Y

)

These are equivalent to give an element f (s) ∈ T for each s, together with a family of natural transfor-
mations indexed by S

βs,Y :

(
∑

p+∈P+(s)
P−(s, p+)⇒ Y

)
−→ ∑

q+∈Q+(f (s))
Q−(t,q+)⇒ Y

But now, we know that a βs,Y is equivalent to a natural transformation between the realization of the
polynomial functors P+(s) ▷P−(s,−) and Q+(f (s)) ▷Q−(f (s),−). Using the characterization of maps
between containers, we know that we can express βs,Y as a function f s : P+(s)→Q+(f (s)) and a function
fp+ : Q−(f (s), f (p+))→ P−(s, p+), obtaining that a morphism between procontainers is given by a
triple:

• f : S→ T

• f s : P+(s)→ Q+(f (s))

• fp+ : Q−(f (s), f (p+))→ P−(s, p+)

In Agda, we can capture this data using a record, which works in a forward direction for shapes and
positive positions, and in a backward direction for negative positions:

record _⇒_ (PC1 : ProContainer) (PC2 : ProContainer) : Set where
constructor _▷_▷_
field shmap : Shape PC1 → Shape PC2

posmap+ : ∀ s → Position+ PC1 s → Position+ PC2 (shmap s)
posmap− : ∀ s p+ → Position− PC2 (shmap s) (posmap+ s p+)

→ Position− PC1 s p+

As in the case of containers, these morphisms are realized as natural transformations:

⟨⟨_⟩⟩ : ∀ {PC1 PC2} (f : PC1⇒ PC2) → ∀ {X Y} → J PC1 K X Y → J PC2 K X Y
⟨⟨ shmap ▷ posmap+ ▷ posmap− ⟩⟩ (s , f) =

shmap s , λ x → let f1 , f2 = f x in
(posmap+ s f1) , λ { p− → f2 (posmap− s f1 p−) }

10 Procontainers for idioms, arrows and monads

The realization of the morphisms defined as above respects the canonical strengths we have given
for the realization of procontainers. Procontainers form a category which we denote by ProCont, where
composition is defined as

· : ∀ {PC1 PC2 PC3} → (PC2 ⇒ PC3) → (PC1⇒ PC2) → PC1⇒ PC3
(shmap1 ▷ posmap+1 ▷ posmap−1) · (shmap2 ▷ posmap+2 ▷ posmap−2) =

(λ s → shmap1 (shmap2 s)) ▷
(λ s p+ → posmap+1 (shmap2 s) (posmap+2 s p+)) ▷
(λ s p+ p− → posmap−2 s p+ (posmap−1 (shmap2 s) (posmap+2 s p+) p−))

and identities are basically identity functions on each component.

4 Procontainer operations

As discussed above, containers are closed under certain operations: coproducts, products, Day convolu-
tion and composition. This is one of the reasons why the class of containers is so successful, as many
data-types can be built using these operations. We seek to have a similar closure property in procon-
tainers, where indeed the situation is similar: they are closed under coproducts, products, some forms of
convolution, and a tensor corresponding to that of Bénabou.

4.1 Product and coproduct of procontainers

The product of profunctors P,Q : Setop×Set→ Set is given by the pointwise product: (P×Q)(X ,Y) =
P(X ,Y)×Q(X ,Y). Procontainers are closed under this operation, where the corresponding Agda code
is the following:

(S ▷ P+ ▷ P−) × (T ▷ Q+ ▷ Q−) = (S × T) ▷ (λ { (s , t) → P+ s × Q+ t })
▷ λ { (s , t) (p+ , q+) → P− s p+ ⊎ Q− t q+ }

Coproduct of profunctors is also defined in a pointwise manner, and procontainers are also closed
under this operation, this time taking coproducts of shapes, and keeping account of the branch for posi-
tions:

(S ▷ P+ ▷ P−) + (T ▷ Q+ ▷ Q−) =
(S ⊎ T) ▷ (λ { (inj1 s) → P+ s ; (inj2 t) → Q+ t })
▷ λ { (inj1 s) s+ → P− s s+ ; (inj2 t) t+ → Q− t t+ }

Theorem 1 The category ProCont has binary products and coproducts defined by the formulas above.

Moreover, we can also extend these constructions to the coproduct of a family of procontainers
indexed by a set of elements as follows:

Σ : ∀ {I : Set} (f : I → ProContainer) → ProContainer
Σ {I} f = (Σ[i ∈ I] Shape (f i)) ▷ (λ { (i , s) → Position+ (f i) s })

▷ λ { (i , s) s+ → Position− (f i) s s+ }

E. Rivas 11

4.2 Tensor of procontainers

Categorically speaking, profunctors are organized in a bicategory consisting of categories, profunctors
and natural transformations. The vertical composition is given by the composition of natural transforma-
tions, while the horizontal composition for profunctors P : C ↛ D and Q : D ↛ E is defined using the
following coend:

(Q◦P : C↛E)(X ,Y) =
∫ I∈D

P(X , I)×Q(I,Y)

This operation is sometimes referred to as Bénabou’s tensor, and we write it as ⊗ when fixing it a single
object (i.e. C = D = E). As a monoidal structure, its unit is given by the hom-set profunctor Hom. In
the categorical semantics of effects, this tensor is used to justify the point of view of arrows as monoid
objects [8, 4]: the sequential composition of arrow computations is given by

≫ : ∀ {x y z} → A x y → A y z → A x z

which can be thought as a natural transformation A⊗A→ A, since families of morphisms αX ,Z : (A⊗
A)(X ,Z) → A(X ,Z) (natural in X and Z) are classified by the coend as families α ′X ,Y,Z : A(X ,Y)×
A(Y,Z)→ A(X ,Z), natural in X , Z and dinatural in Y .

Inspired by this definition, we propose a tensor for procontainers that behaves like Bénabou’s tensor:

(S ▷ P+ ▷ P−) ⊗ (T ▷ Q+ ▷ Q−) =
(S × T) ▷ (λ { (s , t) → Σ[s+ ∈ P+ s] (P− s s+ → Q+ t) }) ▷
λ { (s , t) (s+ , f) → Σ[s- ∈ P− s s+] Q− t (f s-) }

This operation comes with its corresponding action on morphisms

⊗m : ∀ {PC1 PC2 PC3 PC4} → (PC1⇒ PC2) → (PC3 ⇒ PC4) → (PC1 ⊗ PC3)⇒ (PC2 ⊗ PC4)

We will not give details, but this tensor is associative. The unit for this version of the Bénabou’s tensor
is given by the hom-set profunctor Hom. We can write left and right unitality isomorphisms with respect
to ⊗, thus obtain the following result:

Theorem 2 The category ProCont is a monoidal category with Bénabou’s tensor ⊗ defined above and
Hom as its unit.

4.3 Convolutions

As shown in Section 2, containers are closed under a convolution operation known as Day convolution.
This convolution, when applied to F and G, classifies natural families of morphisms

mA,B : FA×GB−→ H(A×B)

such that they can be expressed as morphisms F ⋆G→ H.
We can consider different monoidal structures in both Setop (contravariant argument) and Set (co-

variant argument), and see for which of these we can classify morphisms of the corresponding form.
The convolution we show here instead is the convolution between P and Q that classifies families of

morphisms
mA,B,C,D : P(A,B)×Q(C,D)−→ R(A+C,B+D)

12 Procontainers for idioms, arrows and monads

natural in A,B,C,D. Procontainers are closed w.r.t. this convolution, and the corresponding result is
given by

(S ▷ P+ ▷ P−) +⋆+ (T ▷ Q+ ▷ Q−) =
(S × T) ▷ (λ { (s , t) → (P+ s) ⊎ Q+ t }) ▷
λ { (s , t) (inj1 p+) → P− s p+ ; (s , t) (inj2 q+) → Q− t q+ }

Families mA,B,C,D : P(A,B)×Q(C,D)−→ R(A×C,B+D) natural in A,B,C,D can also be classified
with a convolution, but this case coincides with the product formula for procontainers.

5 Relationship between containers and procontainers

We are now interested in understanding how to convert a profunctor into a functor and vice-versa. Con-
verting a profunctor into a functor is easy: we can fix the first component to a particular set. We will be
interested mainly in the case where we fix the first component to the terminal object 1. We can see what
is happening for the case of procontainers w.r.t. the realization as profunctors:

q
S▷P+ ▷P−

y
(1,Y)∼= ∑

s∈S
∑

p+∈P+(s)
P−(s, p+)⇒ Y

which can be seen as a container with shapes ∑
s∈S

P+(s). In Agda, we express this functor as follows:

_∗ : ProContainer → Container
(S ▷ P+ ▷ P−) ∗ = (Σ[s ∈ S] P+ s) ▷ λ { (s , p+) → P− s p+ }

In terms of bundles, the action of this morphism is to forget the tail and keep only the head:

F
q // E

p // B 7→ F
q // E

In the opposite direction, given an endofunctor F : Set→ Set, we can think of two ways of seeing this as
a profunctor Setop×Set→ Set: Kleisli and Cayley constructions as presented in the introduction.

5.1 Kleisli

The Kleisli construction takes a functor F : Set→ Set to a profunctor F∗ : Setop×Set→ Set defined by
F∗(X ,Y) = X ⇒ FY . This functor is interesting in many aspects, and it can be seen as a categorification
of the assignment turning a function into a relation. In here, we are mostly interested in its usage in
the context of computational effects. We can think of it as the formal justification that allows us to
transform monads into arrows: if monads are monoids w.r.t. composition, and arrows are monoids w.r.t.
Bénabou’s tensor, then if there is a monoidal functor between the underlying categories, then we can
translate monoids to monoids.

As we did with the transformation from profunctors to functors, we can look at the action of this
transformation in the case that F is a container:

JS▷PK∗ (X ,Y)∼= X ⇒∑
s∈S

Ps⇒ Y

E. Rivas 13

In our setting, we can transform the right term into a procontainer: we choose S = 1, P+(∗) = S and
P−(s)=P(s). Thus, we can make a functor Cont→ProCont that sends a container to this corresponding
procontainer:

_∗ : Container → ProContainer
(S ▷ P) ∗ = ⊤ ▷ (λ { tt → S }) ▷ λ { tt s → P s }

In terms of bundles, this functor adds a tail using the terminal map:

E
p // B 7→ E

p // B
!B // 1

This functor works as a right adjoint to the functor _∗:

Theorem 3 There is an adjunction _∗ ⊣_∗.

The functor _∗ is a strong monoidal functor with respect to the structures (◦, Id) in Cont and
(⊗,Hom) in ProCont. It means that we have isomorphisms:

φ0 : Hom∼= Id∗ φC,D : (C∗)⊗ (D∗)∼= (C ◦D)∗ natural in C and D

Using the monoidality of the functor, we can map monoids to monoids. Given a monoid (T,µ,η) in
(Cont,◦, Id), which can be realized as a monad, we can obtain a new monoid (T∗,µ∗ · φT,T ,η∗ · φ0) in
(ProCont,⊗,Hom) which can be realized as an arrow, and this is the translation Kleisli-monad presented
in the introduction.

5.2 Cayley

We are now interested in visiting the so-called Cayley functor. This was originally introduced by Pastro
and Street in the context of enriched strong profunctors, under the name of Tambara modules [16].

The Cayley construction takes a functor F : Set→ Set to a profunctor F! : Setop×Set→ Set defined
as F!(X ,Y) = F(X ⇒ Y). We can see its action on the realization of a container S▷P,

JS▷PK! (X ,Y)∼= ∑
s∈S

X ⇒ [Ps⇒ Y]

which we can be understood as the realization of a procontainer with trivial P+.

_! : Container → ProContainer
(S ▷ P) ! = S ▷ (λ _ → ⊤) ▷ λ { s tt → P s }

Now, when containers are seen as bundles, this functor adds a tail using an identity:

E
p // B 7→ E

p // B id // B

In this case, this functor works as a left adjoint to _∗:

Theorem 4 There is an adjunction _! ⊣_∗.

As in the general case shown by Pastro and Street, this functor is strong monoidal from Day convo-
lution in containers to Bénabou’s tensor in procontainers. It means, again, that we have a way to map
monoids from (Cont,⋆, Id) to monoids in (ProCont,⊗,Hom), which reproduces the transformation
Cayley-idiom seen in the introduction.

14 Procontainers for idioms, arrows and monads

6 Relationship between Dirichlet functors and procontainers

We can take some of the observations in the previous section, but replacing containers with Dirichlet
functors. We obtain a Dirichlet functor from a procontainer by fixing the second argument to the terminal
object of Set, i.e. 1:

q
S▷P+ ▷P−

y
(X ,1)∼= ∑

s∈S

(
X ⇒ P+(s)

)
which is the realization of the Dirichlet functor S▷P+. In code, we write this transformation as:

_¹ : ProContainer → Dirichlet
(S ▷ P+ ▷ _) ¹ = S ▷ P+

When seen in term of bundles, what we are doing is only keeping the tail:

F
q // E

p // B 7→ E
p // B

We can see that this is less satisfying than the analogous functor to containers, as here we are losing more
information: B information is encoded in E so we can throw the tail away without much remorse, but it
is not the case when keeping only the tail, as the information of F is lost. In any case, we can still find
left and right adjoints to these functors following the same recipes as in containers:

E id // E
p // B −1←[E

p // B
−07→ 0

¡E // E
p // B

which we write in Agda as:

_1 : Dirichlet → ProContainer
(S ▷ P) 1 = S ▷ P ▷ λ s s+ → ⊤

_0 : Dirichlet → ProContainer
(S ▷ P) 0 = S ▷ P ▷ λ _ _ → ⊥

where ⊥ represents the empty type, i.e. initial object in Set, 0 = /0.

Theorem 5 There are adjunctions _1 ⊣_0 and _¹ ⊣_0.

When we look at the action of these in terms of functors, we find that

(F1)(X ,Y) = F(X)× (X ⇒ Y) (F0)(X ,Y) = F(X)

7 Generalization, limitations and related work

In this article we have considered only profunctors of the form Setop×Set→ Set, or “endoprofunctors
on Set”. We now discuss briefly possible generalizations of procontainers to more general categories.

When we change Set, we might have two possible generalizations, either we generate functors of the
form Cop×C→C, or profunctors Cop×C→ Set. For this last version, we can consider the construction
of procontainers as follows. Given a functor F : C→C, we can construct an endoprofunctor F∗(X ,Y) =
Hom(X ,F(Y)) which the external version for the Kleisli construction we introduced in Section 5. Such
profunctors are called representable. We can extend this construction with coproducts as follows: given

E. Rivas 15

a family of functors {Fs : C→ C}s∈S, we can construct a new profunctor that is the coproduct of the
corresponding representable profunctors:

F∗(X ,Y) = ∑
s∈S

Fs
∗ (X ,Y) = ∑

s∈S
Hom(X ,Fs(Y))

Under this view, a procontainer on C can be thought of as a family
{

Ps
+ ▷Ps

−
}

s∈S of containers on C,
which is realized as the profunctor corresponding to the coproduct of representable profunctors coming
from the representation of the containers in the family, i.e.

q{
Ps
+ ▷Ps

−
}

s∈S

y
(X ,Y) = ∑

s∈S
Hom

(
X , ∑

p+∈Ps
+

(
Ps
−(p+)⇒ Y

))

Notice that the outer coproduct is a coproduct in Set, while the inner coproduct is a coproduct in C, and
at the same time, Hom represents the external hom of C, while −⇒− represents the internal hom of C.

As for limitations, we have left out the important case where a container is a comonad. These
containers are the directed containers of Ahman and Uustalu [2]. Sadly, we cannot treat them naturally
as we did with monads. To see this, notice that comonads are embedded as profunctors not using −∗ but
instead using its “dual” F/(X ,Y) = FX ⇒ Y . Calculating the action of this functor on a container S▷P,
we obtain: (

∑
s∈S

(P(s)⇒ X)

)
⇒ Y ∼= ∏

s∈S
(P(s)⇒ X)⇒ Y

which cannot be understood as a procontainer in principle: it could have multiple positions for X (de-
pending on P(s)), which break our ability to write a proper strength. More generally, the strength for
the profunctor obtained by a comonad uses the counit of the comonad, which in principle cannot be
given naturally. This problem stops us from being able to treat interesting arrows which come from a
distributive law [8, 21]. One might try alternatives by having a different notion of realization for procon-
tainer, such as a product of corepresentable profunctors instead, although, it is not obvious how to handle
strength in that case.

8 Conclusion

Guided by interfaces for computational effects, we have introduced a notion of procontainer. We have
shown that this notion is closed under interesting operators, and moreover, it has interesting connections
to containers which reflect connections to the treatment computational effects in functional programming
and semantics of programming languages.

It would be interesting to find more categorical characterizations of procontainers, such as those
preserving certain forms of (co)limits. We leave this for further investigation, as well as other categorical
properties that the category of containers has, such as being Cartesian closed [3], or being able to interpret
a model of type theory [6].

Acknowledgments The author is grateful to Tarmo Uustalu for useful discussions and comments on
an early version of this paper. This research was supported by the Estonian Research Council grant no.
PSG749 and the Icelandic Research Fund project grant 228684-051.

16 Procontainers for idioms, arrows and monads

References
[1] Michael Abbott, Thorsten Altenkirch & Neil Ghani (2003): Categories of Containers. In: Proceedings

of the 6th International Conference on Foundations of Software Science and Computation Structures and
Joint European Conference on Theory and Practice of Software, FOSSACS’03/ETAPS’03, Springer-Verlag,
Berlin, Heidelberg, pp. 23–38, doi:10.1007/3-540-36576-1_2.

[2] Danel Ahman & Tarmo Uustalu (2016): Directed Containers as Categories. In: Proceedings 6th Workshop
on Mathematically Structured Functional Programming, EPTCS 207, pp. 89–98, doi:10.4204/EPTCS.207.5.

[3] Thorsten Altenkirch, Paul Levy & Sam Staton (2010): Higher-Order Containers. In: Proceedings of the
Programs, Proofs, Process and 6th International Conference on Computability in Europe, CiE’10, Springer-
Verlag, Berlin, Heidelberg, p. 11–20, doi:10.1007/978-3-642-13962-8_2.

[4] Kazuyuki Asada (2010): Arrows Are Strong Monads. In Venanzio Capretta & James Chapman, editors: Pro-
ceedings of the Third ACM SIGPLAN Workshop on Mathematically Structured Functional Programming,
MSFP ’10, ACM, pp. 33–42, doi:10.1145/1863597.1863607.

[5] Nicola Gambino & Joachim Kock (2013): Polynomial functors and polynomial monads. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 154(1), p. 153–192, doi:10.1017/S0305004112000394.

[6] Tamara von Glehn (2015): Polynomials and models of type theory. Ph.D. thesis, doi:10.17863/CAM.16245.
[7] John Hughes (2000): Generalising Monads to Arrows. Science of Computer Programming 37(1-3), pp.

67–111, doi:10.1016/S0167-6423(99)00023-4.
[8] Bart Jacobs, Chris Heunen & Ichiro Hasuo (2009): Categorical semantics for arrows. Journal of Functional

Programming 19(3-4), pp. 403–438, doi:10.1017/S0956796809007308.
[9] Joachim Kock (2010): Polynomial Functors and Trees. International Mathematics Research Notices 2011(3),

pp. 609–673, doi:10.1093/imrn/rnq068.
[10] Sam Lindley, Philip Wadler & Jeremy Yallop (2011): Idioms are Oblivious, Arrows are Meticulous, Monads

are Promiscuous. Electronic Notes on Theoretical Computer Science 229(5), pp. 97–117. Available at
http://dx.doi.org/10.1016/j.entcs.2011.02.018.

[11] Connor McBride & Ross Paterson (2008): Applicative programming with effects. Journal of Functional
Programming 18(01), pp. 1–13, doi:10.1017/S0956796807006326.

[12] Eugenio Moggi (1989): Computational lambda-calculus and monads. In: Fourth Annual Symposium on
Logic in Computer Science, pp. 14–23, doi:10.1109/LICS.1989.39155.

[13] Eugenio Moggi (1991): Notions of computation and monads. Inf. Comput. 93(1), pp. 55 – 92,
doi:10.1016/0890-5401(91)90052-4.

[14] David Jaz Myers & David I. Spivak (2020): Dirichlet Functors are Contravariant Polynomial Functors,
doi:10.48550/ARXIV.2004.04183.

[15] Robert Paré & Leopoldo Román (1998): Dinatural numbers. Journal of Pure and Applied Algebra 128(1),
pp. 33–92, doi:https://doi.org/10.1016/S0022-4049(97)00036-4.

[16] Craig Pastro & Ross Street (2008): Doubles for monoidal categories. Theory and Applications of Categories
21, pp. 61–75.

[17] Ruben P. Pieters, Exequiel Rivas & Tom Schrijvers (2020): Generalized monoidal effects and handlers.
Journal of Functional Programming 30, p. e23, doi:10.1017/S0956796820000106.

[18] Exequiel Rivas (2018): Relating Idioms, Arrows and Monads from Monoidal Adjunctions. In: Proceedings
of the 7th Workshop on Mathematically Structured Functional Programming, doi:10.4204/EPTCS.275.3.

[19] David I. Spivak (2020): Poly: An abundant categorical setting for mode-dependent dynamics,
doi:10.48550/ARXIV.2005.01894.

[20] David I. Spivak (2022): A reference for categorical structures on Poly, doi:10.48550/ARXIV.2202.00534.
[21] Tarmo Uustalu & Varmo Vene (2005): Signals and Comonads. Journal of Universal Computer Science 11(7),

pp. 1310–1326, doi:10.3217/jucs-011-07-1311.

https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.4204/EPTCS.207.5
https://doi.org/10.1007/978-3-642-13962-8_2
https://doi.org/10.1145/1863597.1863607
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.17863/CAM.16245
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1017/S0956796809007308
https://doi.org/10.1093/imrn/rnq068
http://dx.doi.org/10.1016/j.entcs.2011.02.018
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.48550/ARXIV.2004.04183
https://doi.org/https://doi.org/10.1016/S0022-4049(97)00036-4
https://doi.org/10.1017/S0956796820000106
https://doi.org/10.4204/EPTCS.275.3
https://doi.org/10.48550/ARXIV.2005.01894
https://doi.org/10.48550/ARXIV.2202.00534
https://doi.org/10.3217/jucs-011-07-1311

E. Rivas 17

[22] Philip Wadler (1992): The Essence of Functional Programming. In: Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’92, Association for Com-
puting Machinery, New York, NY, USA, p. 1–14, doi:10.1145/143165.143169.

https://doi.org/10.1145/143165.143169

	1 Introduction
	1.1 Computational effects
	1.2 Containers
	1.3 Our proposal
	1.4 Contributions

	2 Containers, or polynomial functors
	2.0.1 Operations on containers

	3 Procontainers, or polynomial profunctors
	3.1 Procontainer morphisms

	4 Procontainer operations
	4.1 Product and coproduct of procontainers
	4.2 Tensor of procontainers
	4.3 Convolutions

	5 Relationship between containers and procontainers
	5.1 Kleisli
	5.2 Cayley

	6 Relationship between Dirichlet functors and procontainers
	7 Generalization, limitations and related work
	8 Conclusion

