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In the context of programming with effects, sequential composition takes a special role as the pri-
mary control structure for combining computations. In this paper, we advocate the idea that parallel
composition should also be treated as a control structure, on the same footing as sequential composi-
tion. We promote the concept of concurrent monad, which axiomatizes both sequential and parallel
composition, and illustrate the approach by describing two concurrent monads for shared state: one
of resumptions, the other of finite multisets of traces.

1 Introduction

This paper is about concurrency in effectful computation and programming.
We argue that parallel composition as a concurrency primitive is not an effect but a high-level control

structure to be treated on the same footing as sequential composition. Monads axiomatize sequential
composition. If we want to talk about not only sequential composition but also parallel composition, we
need a different mathematical structure that axiomatizes both as well as, crucially, their interaction. Such
an axiomatization is provided by a specialization of monads, called concurrent monads, first proposed
and worked out by Rivas and Jaskelioff [4] within a certain approach to ordered structure for monads
and elaborated by Paquet and Saville [3] in a bicategorical setting. Our aim in this paper is to promote
concurrent monads and demonstrate their expressive power.

We develop the theory of concurrent monads in the setting of Poset-enrichment. We center our
development around the fact that the Kleisli construction for a concurrent monad gives what we call a
concurrent category. Concurrent categories can be seen as a typed generalization of concurrent monoids
from concurrent Kleene algebra of Hoare et al. [2], going back to Gischer [1]. We show a number of
examples, prominently among them two concurrent monads for (preemptive) interleaving shared state
concurrency, one based on resumptions, the other on finite multisets of traces.

To appeal to programmers, we have implemented our development in Haskell. But the implementa-
tion is necessarily only an approximation of the theory since Haskell is more like Set than Poset.

The Haskell code, as well as the draft full paper on this material submitted to another conference, are
available at https://cs.ioc.ee/~tarmo/concurmonads/.

2 A glimpse into details

We work in ordered (= Poset-enriched) category theory, i.e., with ordered categories, ordered functors
and ordered natural transformations (the latter are the same as ordinary natural transformations). A
category C being ordered means that each of its homsets is an ordered set and composition is monotone.
A functor F : C→ C is ordered if f ≤ g implies F f ≤ Fg.

https://cs.ioc.ee/~tarmo/concurmonads/


2 Concurrent Monads for Shared State

The archetypical ordered category is the category Poset of ordered sets and monotone functions, with
the order on each homset of given pointwise. Poset is the base ordered category in all our examples.

A concurrent monad on an ordered monoidal category (C, I,⊗) is given by an ordered functor T
that carries both a monad structure (η ,µ) and a lax monoidal functor structure (ψ0,ψ) satisfying four
interchange inequations: ηI ≤ ψ0, ψ0 ; T ψ0 ; µI ≤ ψ0, ηX⊗Y ≤ ηX ⊗ηY ; ψX ,Y , ψT X ,TY ; T ψX ,Y ; µX⊗Y ≤
µX ⊗ µY ; ψX ,Y . The 1st inequation is implied by the 4th. A concurrent monad is normal if the 1st
inequation holds as an equality, i.e., η1 = ψ0.

If the interchange inequations hold as equalities, then a concurrent monad is just an ordered lax
monoidal monad (commutative monad in Kock’s terminology). If the order structure on C is trivial
(all homsets are discretely ordered), then it is a (trivially ordered) commutative monad. We see that all
expressive power of concurrent monads is thanks to the ordered setting, making it possible to stipulate
interchange inequationally.

The Kleisli construction of a concurrent monad is what we call a concurrent category. It is an or-
dered monoidal-like category (K, IK,⊗K), coming together with an identity-on-objects ordered monoidal-
like functor from (C, I,⊗), its base. A key aspect of this monoidal-likeness is that IK and ⊗K are lax
functors so that the interchange between idK

X ∈ C(X ,T X), (;K) : C(X ,TY )×C(Y,T Z)→ C(X ,T Z) and
IK ∈C(I,T I), ⊗K : C(X ,TY )×C(U,TV )→C(X⊗U,Y ⊗V ) (i.e., between sequential and parallel com-
position of effectful functions) is inequational, like in a concurrent monoid, but typed.

Similarly to how a monad on a category C is the same as a monoid wrt. the composition monoidal
structure on the category [C,C] of endofunctors, a concurrent monad on an ordered category C turns out
to be a concurrent monoid wrt. the ordered composition and Day convolution duoidal structure on the
ordered category [C,C].

The familiar state monad, whose underlying functor is defined on objects by T X = S⇒ S×X , is
ordered and extends to a non-normal concurrent monad if the given ordered set S of states is a lower
semilattice. This concurrent monad implements a very simplistic type of shared state concurrency. If
two effectful functions are composed in parallel, both are run from the given initial state independently
and the final states are reconciled with the meet operation.

Concurrent monads are expressive enough to model customary (preemptive) interleaving shared state
concurrency. We exhibit two concurrent monads that accomplish this. The first is based on resumptions
and is very operational/intensional, the second on finite multisets (bags) of traces, much more denota-
tional/extensional. Differently from the state concurrent monad, where computations consist of one big
step, computations here are made of small steps, making interleaving possible.

The resumptions concurrent monad has the object mapping of the underlying functor defined by
T X = µZ.X +(S⇒ List(S× Z)) where the order on T X uses that ListY is ordered by list inclusion1

combined with the order on Y . A resumption is either terminated or first grabs the state from the envi-
ronment, then makes an internal choice nondeterministically and yields a state and a new resumption.

For the bags of traces concurrent monad, the object mapping of the underlying functor is T X =
Mf(µZ.X + S× S×Z). Here the order on T X uses that MfY is ordered by multiset inclusion and the
order on Y . Compared to resumptions, all nondeterminism (both from grabbing and own choice) is at the
beginning of a computation, it is the choice of one trace from the collection.

These two concurrent monads are normal. There is a concurrent monad morphism between the
resumptions and bags-of-traces concurrent monads.

1xs≤ ys if xs is obtainable from ys by dropping elements at some positions.
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