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This work focuses on utilizing monoidal profunctor homomorphisms to establish connections be-
tween folds, scans, and Moore machines, employing monoidal profunctor homomorphisms as a fun-
damental tool for theoretical reasoning. Despite the recognized versatility of monoidal profunctors
in other areas of functional programming, their application in linking these specific computational
models has not been extensively explored. Folds and scans are analyzed as instances of a specific
monoidal profunctor known as SISO (Structured Input-Structured Output). It is demonstrated that a
Moore machine can also be effectively described as a lawful monoidal profunctor. This work estab-
lishes a clear connection by proving that there are structure-preserving maps from the SISO monoidal
profunctor, representing folds and scans, to the Moore monoidal profunctor, therefore characterizing
this relationship as a homomorphism. This exploration not only enhances the structuring of lawful
and comprehensible programs but also fills a significant gap by establishing the utility of monoidal
profunctors in a new context. This work asserts that the methodologies developed here can be applied
to understand other complex computational processes and their laws.

1 Introduction

Monoidal profunctors play a key role in functional programming, especially for managing well-behaved
parallel computations [11, 9]. A monoidal profunctor is based on a polymorphic type with two variables
and share characteristics with monoidal functors, also known as applicative functors. However, monoidal
profunctors are more flexible than arrows, which can handle both pure and sequential computations.
Monoidal profunctors are designed to manage data in tuples and can lift functions of any arity, whether
covariant or contravariant, unlike regular profunctors, which are limited to functions of a single arity.

Monoidal profunctors can also be viewed as monoids within the monoidal category of profunctors,
especially when using Day convolution as the tensor product. This gives them another notion of compu-
tation as monoids [12].

In terms of applications, monoidal profunctors have been used in tools like Opaleye, a domain-
specific language for databases, and Monocle, which applies concepts to profunctorial optics [9, 11].

This paper explores an interesting application of monoidal profunctors through the combined use
of folds, scans, and Moore machines. It also explores how these elements help create mappings that
preserve structure between two monoidal profunctors, known as monoidal profunctor homomorphisms.
In functional programming, following rules and structures rigorously makes programs easier to under-
stand and reason about. This paper’s approach helps clarify complex concepts through a categorical
perspective, aiding in the understanding of such structures. While the use of monoidal profunctor ho-
momorphisms in functional programming is not new, their application in connecting constructs such as
folds, scans, and Moore machines represents an unexplored area. For transparency and reproducibility,
we have made our complete Agda code and formal proofs publicly available. Interested readers can

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
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access the repository on GitHub to examine the formalization [8]. This work aims to fill this gap by
developing and demonstrating a new methodology that not only elucidates but also leverages the use of
monoidal profunctors to reason about functional programs.

2 Mathematical background

This work assumes that the reader has some basic understanding about Category Theory [7] such as
functors, monads, and natural transformations.

2.1 Monoidal Categories and Monoids

A monoidal category [12] gives us a minimal framework for defining the categorical version of a monoid.
Definition 2.1. A monoidal category is a sextuple (C , ⊗, I, α , ρ , λ ) where

• C is a category;

• ⊗ : C ×C → C is a bifunctor;

• I is an object of C called unit;

• ρA : A⊗I →A, λA : I⊗A→A and αABC : (A⊗B)⊗C →A⊗(B⊗C) are three natural isomorphisms
such that the diagrams below commute.

A⊗ (B⊗ (C⊗D)) (A⊗B)⊗ (C⊗D)
α
oo ((A⊗B)⊗C)⊗D

α
oo

A⊗ ((B⊗C)⊗D)

id⊗α

OO

(A⊗ (B⊗C))⊗D

α⊗id

OO

αoo

A⊗ (I ⊗B) α //

id⊗λ &&

(A⊗ I)⊗B

ρ⊗idxx
A⊗B.

If there is a natural isomorphism γAB : A⊗B → B⊗A the monoidal category is called symmetric.
Definition 2.2. A monoid in a monoidal category C is a tuple (M,e,m) where M is an object of C ,
e : I → M is the unit morphism and m : M⊗M → M is the multiplication morphism, satisfying

1. Right unit: m◦ (id ⊗ e) = ρM

2. Left unit: m◦ (e⊗ id) = λM

3. Associativity: m◦ (m⊗ id) = m◦ (id ⊗m)◦αM

Given the categorical concept of a monoid, we can now define a structure-preserving map between
these monoids, known as a monoid homomorphism.
Definition 2.3. Given two monoids (M1,m1,e1) and (M2,m2,e2) in a monoidal category C , a monoid
homomorphism between them is an arrow f : M1 → M2 in C such that the following diagram commutes:

M1 ⊗M1 M1

M2 ⊗M2 M2

m1

f⊗ f f

m2

I M1

M2

e1

e2
f

Monoids in a monoidal category C , together with monoid homomorphisms, form the category Mon(C ) [12].
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2.2 Profunctors

Definition 2.4. Given two categories C and D , a profunctor [6] from C to D is a functor P : C op×D →
Set. Explicitly, it consists of:

• for each a object of C and b object of D , a set P(a,b);

• for each a object of C and b,d objects of D , a function (left action) D(d,b)×P(a,d)→ P(a,b);

• for all a,c objects of C and b object of D , a function (right action) P(a,b)×C (c,a)→ P(c,b).

This notion is also known as a bimodule or a (C ,D)-module, and also known as a distributor.
Since a profunctor is a functor from the product category C op ×D to Set, it must satisfy the functor

laws.

P(1C,1D) = 1P(C,D)

P( f ◦g,h◦ i) = P(g,h)◦P( f , i)

An example of a profunctor is the hom-functor Hom : C op ×C → Set, written as A → B when C = Set,
and its actions are just pre-composition and post-composition of set functions.

In Haskell, the Profunctor type class allows mapping over both input (contravariant) and output
(covariant) types, enabling the lifting of pure functions to work with processes. When implementing an
instance of Profunctor, the profunctor laws must hold.

class Profunctor p where
dimap :: (a → b)→ (c → d)→ p b c → p a d

Definition 2.5. Let C and D be small categories, Prof(C ,D) is the profunctor category consisting
of profunctors as objects, natural transformations as morphisms, and vertical composition to compose
them.

2.3 Monoidal Profunctors

Knowing what a profunctor is, we now define a monoid in the category of profunctors. To achieve this,
we adapt the concept of Day convolution, originally developed for functors [1], to be applicable in the
context of profunctors.

Definition 2.6. Let D be a small monoidal category and P,Q : C op ×C → Set, the Day convolution of
the profunctors P and Q is another profunctor given by

(P⋆Q)(S,T ) =
∫ ABCD

P(A,B)×Q(C,D)×C (S,A⊗C)×C (B⊗D,T ). (1)

The Day convolution functions as a unital and associative tensor product, as detailed in reference [10].
The next two results help to build the notion of a monoidal profunctor, since the first proposition defines
the unital notion, and the second one helps to define the multiplication.

Proposition 2.7. Let (C ,⊗,I) be a small monoidal category, P : C op×C → Set be a profunctor, and S,T
two objects of C . Then

∫
S,T Set(J(S,T ),P(S,T )) ∼= P(I, I), where J(S,T ) = (C op ×C )((I, I),(A,B)) ∼=

C (S, I)×C (I,T ).

Proof. See [10], Proposition 5.
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It is worth noting that the profunctor J serves as the unit of the Day convolution ⋆ [9].

Proposition 2.8. Let D = C op⊗C , there is a one-to-one correspondence defining morphisms going out
of a Day convolution for profunctors∫

XY
(P⋆Q)(X ,Y )→ R(X ,Y )∼=

∫
ABCD

P(A,B)×Q(C,D)→ R(A⊗C,B⊗D)

which is natural in P, Q and R.

Proof. See [10], Proposition 8.

We can now define the monoidal profunctor by applying the methodology of monoids in a monoidal
category.

Definition 2.9. Let (C ,⊗, I) be a small monoidal category. A monoid in the profunctor category with
the monoidal structure inherited by the Day convolution is a profunctor P, a unit given by the natural
transformation between the unit profunctor J and P, e : J → P, equivalent to e : P(I, I) [10], and the
multiplication is m : P ⋆P → P which is isomorphic to the family of morphisms V (m)ABCD = P(A,B)×
P(C,D)→ P(A⊗C,B⊗D) [10]. Such a monoid is called a monoidal profunctor. This construction is
indeed a monoid [10].

As an example, consider (Set,×,1), where 1 is a singleton set, and the Hom profunctor P(A,B) =
A → B, trivially gives us a monoidal profunctor.

3 Monoidal Profunctors in Haskell

In Haskell, the structure of a monoidal profunctor is encapsulated within the following typeclass:

class Profunctor p ⇒ MonoPro p where
mpempty :: p () ()
(⋆) :: p a b → p c d → p (a,c) (b,d)

and it captures the notions of a parallel computation with a trivial computation mpempty.
Since this is a monoid, this typeclass should follow the monoidal laws.

• Left identity: dimap diagr snd (mpempty⋆ f ) = f

• Right identity: dimap diagl fst (f ⋆mpempty) = f

• Associativity: dimap assoc−1 assoc (f ⋆ (g⋆h)) = (f ⋆g)⋆h

where the helper functions diagr :: x → ((),x), diagl :: x → (x,()), assoc−1 :: ((x,y),z)→ (x,(y,z)), and
assoc :: (x,(y,z))→ ((x,y),z) are the obvious ones.

The simplest example of a monoidal profunctor is the function type (→).

instance MonoPro (→) where
mpempty = id
f ⋆g = λ (a,b)→ (f a,g b)

A structured input and a distinct structured output, as exemplified by the SISO type, serve as another
illustration of a monoidal profunctor.
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data SISO f g a b = SISO {unSISO :: f a → g b}
instance (Functor f ,Functor g)⇒ Profunctor (SISO f g) where

dimap ab cd (SISO bc) = SISO (fmap cd ◦bc◦ fmap ab)

instance (Functor f ,Applicative g)⇒ MonoPro (SISO f g) where
mpempty = SISO (λ → pure ())
SISO f ⋆SISO g = SISO (zip′ ◦ (f ⋆g)◦unzip′)

where zip′ ::Applicative f ⇒ (f a, f b)→ f (a,b) is the applicative functor multiplication. The most basic
notion of a monoidal profunctor is represented by this instance. It tells us that the input needs to be
a functor instance because of unzip′, the functions f and g are composed in a parallel manner using
the monoidal profunctor instance for (→) and then regrouped together using the applicative (monoidal)
behavior of zip′.

3.1 Moore Machines

The Moore machine is a fundamental structure in automata theory and can be defined as a tuple (S, I,O
,s0,δ ,λ ), where S is the set of states, I is the input alphabet, O is the output alphabet, s0 is the initial
state, δ : S× I → S is the transition function, and λ : S → O is the output function. The behavior of a
Moore machine is determined by the input sequences and the corresponding output sequences produced
by the output function. Moore machines are known for their simplicity and ease of implementation,
making them a popular choice in the design of finite-state machines.

An essential characteristic of Moore machines is that the current state entirely determines the output
function, which means that the output is not affected by the input sequence. This is in contrast to Mealy
machines, where the output depends on both the current state and the input.

data Moore a b = Moore b (a → Moore a b)

The data constructor above has as arguments an output b and a function to transition the machine
from its current state to a new state, depending on the input it receives.

It is easy to see that Moore type is a profunctor, and a MonoPro by just parallel composing the
transitions and collecting the outputs from both machines.

instance Profunctor Moore where
dimap f g (Moore c bm) = Moore (g c) (dimap f g◦bm◦ f )

instance MonoPro Moore where
mpempty = Moore () (\ → mpempty)
(Moore b am)⋆ (Moore d cm) = Moore (b,d) (λ (a,c)→ am a⋆ cm c)

Lemma 3.1. The type Moore is a monoidal profunctor.

Proof. We need to prove the unital and associativity laws. Firstly, let’s prove the right unital law (the left
one is analogous). Consider f = Moore b am. Let us prove that dimap diagr snd (mpempty⋆ f ) = f .
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dimap diagr snd (mpempty⋆ (Moore b am)) =

{ Expand the ⋆ operation }
dimap diagr snd (Moore ((),b) (λ ((),a)→ const mpempty⋆am a)) =

{ Apply dimap to Moore }
Moore (diagr ((),b)) (dimap diagr snd ◦ (Moore ((),b) (λ ((),a)→ const mpempty⋆am a)◦ snd)) =

{ The first input is always ignored }
Moore b am =

{ Identify the Moore machine }
f

To demonstrate associativity, consider three Moore machines defined as follows:
• Let f = Moore b am,

• Let g = Moore d cm,

• Let h = Moore f em.
Assume that the transition functions satisfy the associativity condition:

(am a⋆ cm c)⋆ em e = am a⋆ (cm c⋆ em e).

We will use co-induction to prove that the operation ⋆ is associative across these Moore machines.

(f ⋆g)⋆h =

{ Definitions of f, g and h }
((Moore b am)⋆ (Moore d cm))⋆ (Moore f em) =

{ Definition of ⋆ for Moore }
Moore (b,d) (λ (a,c)→ am a⋆ cm c)⋆ (Moore f em) =

{ Expand the next ⋆ }
Moore ((b,d), f ) (λ ((a,c),e)→ (am a⋆ cm c)⋆ em e) =

{ Associate state spaces and transition functions }
Moore (assoc (b,(d, f ))) (dimap assoc−1 assoc◦ (λ ((a,c),e)→ (am a⋆ cm c)⋆ em e)◦assoc−1) =

{ Definition of dimap (symmetry) }
dimap assoc−1 assoc (Moore (b,(d, f )) (λ (a,(c,e))→ am a⋆ (cm c⋆ em e))) =

{ Rearrange using associativity }
dimap assoc−1 assoc ((Moore b am)⋆ (Moore (d, f ) (λ (c,e)→ cm c⋆ em e))) =

{ Expand ⋆ again }
dimap assoc−1 assoc ((Moore b am)⋆ ((Moore d cm)⋆ (Moore f em))) =

{ Definition of ⋆ (symmetry) }
dimap assoc−1 assoc (f ⋆ (g⋆h))
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A Moore machine can be constructed using the following type, representing a coalgebra [13].

data MooreCoalg s a b = MooreCoalg (s → b) (s → a → s)

where the first argument is the function λ , and the second one δ , with type variables a and b representing
the input and output alphabets.

buildMoore :: MooreCoalg s a b → s → Moore a b
buildMoore mc@(MooreCoalg out next) s =

Moore (out s) ((buildMoore mc)◦next s)

To construct a Moore datatype, we use the above function buildMoore that takes a MooreCoalg
argument and extracts its state to get the output, and makes a recursive call to obtain the machine transi-
tions. One can easily build a Moore machine this way by simply defining which function determines the
machine output, and which function determines the transition.

countMoore :: Moore a Int
countMoore = buildMoore (MooreCoalg id (λ s → s+1)) 0

The above machine ignores every input and returns an updated state by adding 1 to the previous state,
its initial state is 0. Note that the output is the identity function meaning that every state will be the output
of the machine providing a Moore machine that is a simple counter.

Such Moore machines may be run by transforming them in functions of type [a ] → NonEmpty b.
This can be achieved by reading every input and executing the transitions at every step. After a new state
is obtained, we append to the returning non-empty list as follows.

runMoore :: Moore a b → [a ]→ NonEmpty b
runMoore (Moore b ) [ ] = b : | [ ]
runMoore (Moore b f ) (a : as) = b : |go (f a) as

where
go :: Moore a b → [a ]→ [b ]
go (Moore b f ) [ ] = [b ]
go (Moore b f ) (a : as) = b : go (f a) as

It is important to note that we use a non-empty list version here because it guarantees that the output
always contains at least one element, reflecting the initial state of the Moore machine. The inner function
go recursively processes the input list, producing a list of outputs corresponding to each step of the Moore
machine. The same function can be used to give only the final state of the machine without creating an
accumulated list of b.

runMooref :: Moore a b → [a]→ b
runMooref (Moore b ) [ ] = b
runMooref (Moore f ) (a : as) = runMooref (f a) as
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4 Folds and Scans Through Moore Machines and Monoidal Homomor-
phisms

It is worth noting that in this section, we employ Haskell syntax to articulate categorical concepts within
our proofs. To initiate our exploration of the connections between Folds, Scans, and Moore machines
via monoidal profunctor homomorphisms, we begin by examining a straightforward example: using a
Moore machine to count the number of elements read from the input.

> runMoore countMoore [(),(),(),(),()]
>0 : | [1,2,3,4,5 ]

By running the countMoore machine with five unit inputs (can be anything, it will be ignored), the
return is a list from 0 to 5, meaning that we obtain the initial state 0, and the next five steps that increases
the counter by 1.

One can observe that the same can be obtained by using the function scanl (for non-empty lists), in
Haskell, from Data.List.

runMoore◦buildMoore (MooreCoalg id (λ s → s+1))
= scanl (λ s → s+1)

That can be generalized as the following rule.

runMoore◦buildMoore (MooreCoalg id f ) = scanl f

If we take a closer look at the function scanl, we can observe that it builds and runs a Moore machine
simultaneously. If the single parameter b were a function, the types of the first two parameters would
match MooreCoalg, and the return type would be the same as runMoore.

scanl :: (b → a → b)→ b → [a ]→ NonEmpty b

Using a Moore abstraction allows us to construct more complex ways to do accumulated folds that is
not possible using scanl only. Now we can explore the connection between Moore machines, left scans
and left folds. First, let us take a look on foldl, and runMoore.

foldl :: (s → a → s)→ s → [a ]→ s
foldl s [ ] = s
foldl f s (a : as) = foldl f (f s a) as

One can observe that foldl resembles runMoore, to explain this, we observe that the type of this
function can be modified to allow an output type b.

ofoldl :: (s → a → s)→ s → (s → b)→ [a ]→ b
ofoldl f s sb as = sb (foldl f s as)

Analyzing the parameters of ofoldl, we have an initial state s, a transition s → a → s, and an output
function s → b. If this output function is the identity function id, then we recover foldl. This is setup is
suitable for building Moore machines using MooreCoalg type, and the buildMoore function.

Furthermore, the return type [a]→ b is a monoidal profunctor, given its equivalence to
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type Fold a b = SISO [ ] Identity a b

We now can rewrite the ofoldl function as follows.

mfoldl :: Moore a b → Fold a b
mfoldl m = SISO (λas → Identity (runMooref m as))

Now, we have a function between two monoidal profunctors: Moore and Fold. This way of writing
a fold gives us some reasoning benefits.

Lemma 4.1. The function mfoldl is a natural transformation between the profunctors Moore and Fold.

Proof. We need to prove that the following diagram commutes.

Moore b c

mfoldl
��

f // Moore a d

mfoldl
��

Fold b c g
// Fold a d

Since Moore and Fold are profunctors f , and g are both of the form f = dimap h i, and g = dimap h i,
for arbitrary h : a → b, and i : c → d. We use the subscripts Fold and Moore for dimap to indicate to
the reader which instance will be used to evaluate the expressions. The commuting diagram tells that we
need to prove the following rule.

dimapFold h i◦m f oldl = m f oldl ◦dimapMoore h i

So, by function extensionality, we only need to prove that given an arbitrary m :: Moore b c, we have the
following equality.

dimapFold h i(m f oldl m) = m f oldl(dimapMoore h i m)

We start from the right-hand side of the above equation.

mfoldl (dimap h i m)

= { definition of mfoldl and m = Moore b f }
SISO (λas → Identity (runMoore (dimap h i (Moore b f )) as))

= { definition of dimap }
SISO (λas → Identity (runMoore (Moore (i b) (dimap h i◦ f ◦h) as)))

We now see that the term SISO (λas → Identity (runMoore (Moore (i b) (dimap h i ◦ f ◦ h) as))) is
running a Moore machine recursively using the function h on each input and the function i on each output,
so that gives us a structurally equal term SISO (λas → Identity (i (runMoore (Moore b f ) (map h as)))).
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SISO (λas → Identity (i (runMoore (Moore b f ) (map h as))))

= { definition of m, fmap and map (symmetry) and m = Moore b f }
SISO (fmap i◦ (λas → Identity (runMoore m as)))◦ fmap h)

= { definition of dimap (symmetry) }
dimap h i (SISO (λas → Identity (runMoore m as)))

= { definition of mfoldl (symmetry) }
dimap h i (mfoldl m)

Lemma 4.1 gives us the corresponding fusion law [3] for foldl.

foldl op e◦map f = foldl (λ s a → op s (f a)) e

but, using the lemma above we can write both sides using mfoldl. The left-hand side of the above
law is the term foldl op b◦map f , which states that we map a function f to the input list and then fold it,
this is precisely what happens with a Fold, this same behavior is achived by the term dimap f id ◦mfoldl.
Conversely, the term foldl (λ s a → op s (f a)) e, which gives us the same behavior as acting on the input
of a Moore machine, s the analogous term is mfoldl◦dimap f id. Hence, the fusion law is a corollary of
Lemma 4.1.

dimap f id ◦mfoldl = mfoldl◦dimap f id

The exact same reasoning can be done to treat scanls as a natural transformation between two pro-
functors. In this case, we have this transformation between Moore and Scan a b= SISO [ ]ZipNonEmpty a b.
We use a ZipNonEmpty instead of [ ] because its Applicative instance provides the ”zippy” behavior to a
list.

mscanl :: Moore a b → Scan a b
mscanl m = SISO (λas → ZipNonEmpty (runMoore m as))

The definition of ZipNonEmpty follows the same pattern as ZipList, but with a modification to the
Applicative instance. We change the Applicative instance to use the behavior of a zip, rather than the
original applicative behavior of NonEmpty, which is similar to that of a list. This ensures that the elements
are combined pairwise, aligning with the expected zip functionality.

data ZipNonEmpty a = ZipNonEmpty {unzipne :: NE.NonEmpty a}
deriving Show

instance Functor ZipNonEmpty where
fmap f (ZipNonEmpty (a : |as)) =

ZipNonEmpty ((f a) : | fmap f as)

instance Applicative ZipNonEmpty where
pure a = ZipNonEmpty (a : | repeat a)
(ZipNonEmpty (f : | fs))⊗ (ZipNonEmpty (x : | xs))

= ZipNonEmpty ((f x) : | zipWith ($) fs xs)
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Now we prove lemmas about mscanl as well, showing that this function is also a natural transforma-
tion that preserves the monoidal profunctor structure.

Lemma 4.2. The function mscanl is a natural transformation between the profunctors Moore and Scan.

Proof. The proof procceds with the same reasoning as Lemma 4.1, thus one needs to show that the
following diagram commutes.

Moore b c

mscanl
��

f // Moore a d

mscanl
��

Scan b c g
// Scan a d

This lemma gives us that for any h : a → b, and i : c → d we have dimap h i◦mscanl = mscanl◦
dimap h i.

The mfoldl function in our structure respects the unit mpempty and the monoidal multiplication in-
herent to a monoidal profunctor.

Lemma 4.3. The functions mfoldl, and mscanl preserve mpempty.

mfoldl mpempty = mpempty

mscanl mpempty = mpempty

Proof. Firstly, we notice that mfoldl mpempty = runMoore (Moore () (\ → mpempty)), the RHS is
the mpempty of a function type, that is const (). The left-hand side clearly produces only (), and the
constant function with () as argument will also do so. Thus, the equation holds for mfoldl. Since the only
production is (), the equation will also hold for mscanl.

Lemma 4.4. The functions mfoldl, and mscanl preserve ⋆.

mfoldl (m⋆n) = mfoldl m⋆mfoldl n

mscanl (m⋆n) = mscanl m⋆mscanl n

Proof. First we prove the identity for mfoldl. Given m = Moore b am ::Moore a b, and n = Moore d cm ::
Moore c d, we know that m⋆n = Moore (b,d) (λ (a,c)→ am a⋆ cm c). Hence,

mfoldl (m⋆n) = λ ls → runMoore (Moore (b,d) (λ (a,c)→ am a⋆ cm c) ls),

and

mfold m⋆mfoldl n

= { definition of mfold }
λ ls → zip′ ((λas → Identity (runMoore m (fst as))⋆

(λcs → Identity (runMoore n (snd cs)))

(unzip ls)))

= { definition of zip′ and ⋆ }
λ ls → (runMoore (fst (unzip ls)),runMoore (snd (unzip ls))
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We need to prove now that for any ls :: [(a,c)], we get the following.

runMoore (Moore (b,d) (λ (a,c)→ am a⋆ cm c) ls =
runMoore (fst (unzip ls)),runMoore (snd (unzip ls)

For ls = [ ], we clearly have that both sides of the equation have the same state, giving us the base
case. Assume the equation holds for a list ls = zs, and we want to show that the equation holds for the
prepended input pairs ls = (x,y) : zs which both having types x :: a and y :: c respectively. We first apply
the transition functions am and bm of Moore machines m and n to the first components x and y of the
input, respectively. Then, we use the induction hypothesis on the rest of the input list zs to prove that
the equation holds for the entire input list x : zs. By function extensionality, we get the desired result for.
Thus, mfoldl (m⋆n) = mfoldl m⋆mfoldl n.

Since mscanl is simply a variation of mfoldl that accumulates the outputs instead of only returning
the final output, we can observe that we will have the same results for every list input, so the result also
holds for mscanl.

Lemma 4.4 indicates that folding over a list of pairs using a combined folding function is equivalent
to folding over two separate lists using individual folding functions and combining the results using the
expressiveness of the MonoPro interface. Translating to plain fold, we get the following law.

foldl (dblSwap (uncurry f ⋆uncurry g)) (e,u) (zip as bs)
= (foldl f e as, foldl g u bs)
where dblSwap = curry (lmap (λ ((a,b),(c,d))→ ((a,c),(b,d)))

One can observe that the left-hand side is sometimes called a bifold. A bifold is a function that combines
two separate folds into a single operation. This idea can be used to simplify the law, making it easier to
state and understand.

bifold f g (e,u) as bs = (foldl f e as, foldl g u bs)

Lemma 4.5. The functions mfoldl and mscanl are monoidal profunctor homomorphisms, i.e., they pre-
serve mpempty and ⋆.

Proof. This follows directly from Lemmas 4.1, 4.2, 4.3 and 4.4.

The above result allows us to reason about left folds as a categorical construct, specifically as a
monoidal profunctor. By connecting folds and Moore machines through a monoidal profunctor homo-
morphism, we generalized fold/scan laws using this categorical framework, illustrating how specific
instances of monoidal profunctors yield these laws.

5 Related Work

Previous research by Gibbons [2], Hinze [3], and others has extensively analyzed the algebraic properties
and laws governing fold-like structures in functional programming. In Hinze’s work, the focus was
on using category theory and algebraic structures to deepen the understanding of folds, providing a
systematic method to derive folding functions and their properties. Gibbons, on the other hand, explored
the connection between folds and origami programming, emphasizing how transformations within data
structures can be elegantly modeled using folding operations.
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Moore machines, derived from automata theory, benefit from a coalgebraic encoding, as detailed by
Jacobs [4]. This encoding facilitates more intuitive reasoning about these machines within the context of
functional programming. In Haskell, they are represented in the machines package developed by Edward
Kmett [5]. This package utilizes Moore machines to facilitate the construction of efficient, modular data
processing pipelines, allowing for a functional approach to stream processing and state management.
This package also provides a profunctor instance to a Moore machine type.

6 Conclusion

This study has successfully established a theoretical connection between folds, scans, and Moore ma-
chines with the framework of a monoidal profunctor homomorphism. By demonstrating how these com-
putational models can be coherently unified under the concept of monoidal profunctors, we provide a
robust categorical foundation that enhances understanding and utility of lawful computations in func-
tional programming.

Our exploration suggests that further research into the monoidal profunctor structure could benefit
the community. The complex nature and less common usage of monoidal profunctors mean that the
results found are based on a foundation that requires deeper and more widespread study to fully realize
its potential. In this work, we have demonstrated that folds are equivalent to SISO [ ] Identity, while scans
correspond to SISO ZipList ZipList. These constructs relate to a Moore machine through the monoidal
profunctor homomorphism. With a deeper understanding of monoidal profunctors, it is possible to extend
this analysis further. As illustrated here, by utilizing instances of a monoidal profunctor, one can derive
additional laws that govern the behavior of the desired object. For instance, this methodology can also
be applied to derive laws for unfolds, further highlighting the relevance of this study.

For future work, there is a clear trajectory for extending this research to discover and utilize additional
examples of monoidal profunctor instances. Exploring other structures within the realm of monoidal pro-
functors can potentially uncover new ways to derive similar laws and patterns. Furthermore, expanding
the theoretical framework to include more diverse monoidal profunctor structures could yield richer in-
teractions and more sophisticated tools for reasoning about pure functional programs.
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