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How do you build strong type safety into a programming language? One answer to this problem is
to provide a formalization for, if it exists, the denotational semantics of the programming language.
Achieving such a formalization provides a high standard for ensuring the programming language
is correct-by-construction. In our paper, we discuss steps toward building the foundation for the
denotational semantics of a meta-language for composition of high-level abstractions of domain-
specific languages using operads. The category of operads has properties that allow for the smooth
composition of objects, allowing us to easily build larger structures from basic pieces. In particular,
these properties provide an excellent ground to model our meta-language and its need to compose
high-level abstractions of domain-specific languages. To take the first step towards this formalization,
we formalize operads, as they are the basic pieces future work relies on. Throughout this paper, we
discuss our formalization of the definition of an operad in the proof assistant Coq and an important
instantiation of our definition in Coq which provides a concrete formalization of an example of an
operad. As such, this work in Coq provides a formal mathematical basis for our meta-language
development. Our work also provides, to our knowledge, the first known formalization of operads
within a proof assistant that has significant automation, as well as a model of operads that does not
rely on Homotopy Type Theory.

Disclaimer: The views, opinions and/or findings expressed are those of the author and should
not be interpreted as representing the official views or policies of the Department of Defense or the
U.S. Government.
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1 Introduction

The DARPA V-SPELLS (Verified Security and Performance Enhancement of Large Legacy Software)
program aims to create developer-accessible capability for piece-by-piece enhancement of software com-
ponents for large legacy codebases with new verified code that is safely composable with the rest of the
system.

In our approach with the Johns Hopkins Applied Physics Laboratory to solving the problems posed
by V-SPELLS, our tool in development, called LUMOS, begins by applying methods from static anal-
ysis, natural language processing, and dynamic analysis to the legacy source code in order to generate
high-level abstractions of these domain specific languages (DSLs) that we call domain-specific seman-
tic models (DSSMs) from the DSLs that comprise the source code. The DSSMs will be generated in a
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2 Formalizing Operads for a Categorical Framework of DSL Composition

language we refer to as the meta-DSL, and in order to provide the patches to the legacy code requested
in V-SPELLS, these DSSMs will have to be composed in very specific ways. In order to ensure correct-
ness of composition, as is required in V-SPELLS, we are providing verification of composability via an
algebraic framework using several ideas from category theory, including the key structure to our mod-
eling: operads. Operads, which are also known as symmetric multicategories, have begun to play an
increasingly important role within applied mathematics (see [7, 4, 1, 2, 5]), and we find they provide an
excellent mathematical model for our verification needs on V-SPELLS. To be more precise about our
formal modeling, when a DSSM is written in the meta-DSL, we will use an operad to model the DSSM
in the meta-DSL, and composition of DSSMs within the meta-DSL will be modeled via a gluing oper-
ation in the category of operads. Mathematically, operads provide will provide a formal model for the
syntax of a key portion of the language of the meta-DSL, and we briefly discuss how this operad-based
syntactical model can further be used to provide a mathematical model for the denotational semantics of
the meta-DSL. However, we maintain the focus of this paper is to discuss our formalization of operads
in the proof assistant Coq. Our repository for our formalization of operads can be found in [3].

2 Motivation

2.1 Role of Formalization in LUMOS

The initial need for a framework that describes and verifies compositionality of DSLs arose organically
from the DARPA V-SPELLS program’s need to correctly compose fragments of several different pro-
gramming languages. While having a formalization of operads will be useful in many future contexts,
we describe here our application in depth.

In Coq, we define the meta-DSL as an object using records. The underpinning idea for this choice is
as follows: we want to view each DSL as an operad, so that the meta-DSL will be a subcategory of the
category of operads. A further goal for this choice is that within this subcategory, we will have a natural
notion of composition, and this is what we discuss in our description of the mathematical motivation for
DSL composition in this context in Subsection 2.2.

Given Coq’s popular usage for software verification, it was natural for the LUMOS team to choose
to implement the meta-DSL in Coq; for example, Coq can be extracted into OCaml, and this can be
integratd into a CI/CD pipeline. Moreover, we can identify types in a DSSM with types in Coq. These
types serve as the colors (see Definition 3.1) for the operads that model the DSSM in Coq, and thus we
choose Coq’s Type, or a subset thereof, as the collection from which we choose our colors (see Section
4). The operad structure allows us to define functions in the DSSM with several input types and a single
output type (these correspond, respectively, to c and d in Definition 3.1), and natural choices within our
subcategory of operads that represent the DSSMs guarantee that functions arising from different DSLs
compose correctly.

2.2 A Mathematical Model for the Syntax of DSL Composition

Our goal here is to introduce the mathematics behind the syntax of DSL composition, as well as starting
to motivate our claim in Subsection 2.1 that we can view a high-level abstraction of a DSL as an operad.
Moreover, we also discuss the beginnings of a constructive algebraic framework for DSL composition.

To start, we provide our informal mathematical definition of a DSL and provide an example.
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Definition 2.1 A syntactical model for a domain-specific language D is a collection of types, DT , and
a collection of finite-arity functions, DF , on those types that can be composed to form new functions in
D .

We will often just refer to this model as a domain-specific language, or DSL for short.

Example 2.2 Let DT := {nat, str}, and DF := {print, hash}. The syntax printnm takes in n,m in nat
and returns the first n digits of m; hashstr computes a hash of a given string, so that something of type
nat is returned.

In D , we can create the function firstn that prints the first n digits of a hash of a string with the syntax
printn(hashstr). Then firstn is also in DF .

For clarity, in Definition 2.1, we are not only viewing a DSL D as a base collection of types and
finite-arity functions on those types, but also as a system which allows for the creation of new functions
from these base collections. Our aim with Definition 2.1 is also to describe the syntax of a DSL, and we
will later discuss the possibility of how we can describe the semantics of a DSL using similar notions.

The main goal of the meta-DSL is to produce a a DSL D from a finite collection of DSLs. To
provide motivation for how we are going to accomplish this in general, we provide an outline on how to
accomplish this given two DSLs, D ′ and D ′′.

Suppose we can regard any DSL D as an object in a category D. Now given D ′ and D ′′, there is a
third DSL Z in D, for which there are morphisms in D:

D ′
f ′←Z

f ′′→D ′′. (1)

Then we let the composition of D ′ and D ′′ along Z , denoted by D , be the object in D that is
the pushout of D ′ and D ′′ along Z . This means that D is a DSL in D, and there are morphisms in D,
i′ : D ′→D , i′′ : D ′′→D such that the diagram in Figure 1 of the appendix in Section 7 commutes. More-
over, the triple (D , i′, i′′) is universal with respect to the diagram in Figure 1. This means if (E , j′, j′′) is
another triple in the category D making the diagram in Figure 1 commute, there exists a unique u : D→ E
such that the diagram in Figure 2 of the appendix in Section 7 commutes.

A pushout is a construction that can exist in any category, and a relevant question to ask is if mor-
phisms in 1 exist, does a pushout for D ′ and D ′′ along Z exist in D? In the context of our meta-DSL, it is
necessary for a pushout to always exist. However, there is some generalization required since a pushout
is only valid for the diagram in Figure 1.

In order to fully describe how a pushout along Z provides the desired definition for composition of
D ′ and D ′′, we first describe the construction of a pushout in the category of sets, which we denote by
Set.

Example 2.3 Given sets X ,Y , and Z, we want to form the pushout X and Y along Z given the functions
f : Z→ X ,g : Z→ Y . The disjoint union of X and Y is given by:

X ⊔Y := {(x,0) : x ∈ X}∪{(y,1) : y ∈ Y} . (2)

Here, 0,1∈ {0,1} are just regarded as distinct symbols. Then the pushout of X and Y along Z is given
by the quotient of X ⊔Y by the finest equivalence relation, denoted by ∼, on 2 that identifies ( f (z),0)
with (g(z),1) for z ∈ Z. Hence the quotient, X ⊔Y/ ∼, is a set, and it is a straightforward exercise to
show that it satisfies the properties required in Figure 2 in Set.
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Remark 2.4 In Example 2.3, the finest equivalence relation on a set A can be defined to be an equiva-
lence relation∼R on A such that for any other equivalence relation∼S on A, if a,a′ ∈ A, and a∼S a′, then
a ∼R a′. Our aim is to make this notion constructive in the context of the category D by using Example
2.3 as a template. We discuss a path for this in the next example.

Example 2.5 Let D ′ be the DSL from Example 2.2, but with some renaming: D ′T = {nat0,str0} and
D ′F = {print0,hash}.

We let D ′′ be the DSL with D ′′T = {nat1, int,str1}, and D ′′F = {print1,add.nat1,add.int}. Ideally, the
semantics of D ′′ should have int as a type for the integers, print1 functions as print0 in D ′, and add.nat1
and add.int perform addition on nat1 and int, respectively.

The composition of D ′ and D ′′ we would like would be D , with DT = {nat, int, str} and DF =
{print,hash,add.nat,add.int}. Semantically, we want nat and str to retain all the same properties that
nati and stri have in D ′ and D ′′, but also allow them to fit into the larger context that is their composition.
Likewise, we want print to perform as it does in both D ′ and D ′′.

What is a path to arrive mathematically at the syntax of the composition D of D ′ and D ′′ in the vein
of Example 2.3? A rough sketch is the following: first form the DSL Z for which ZT = {nat, str}, and
ZF = {print}. Next, construct maps between ZT and D ′T and D ′′T that identify nat with nati, and maps
between ZF and D ′F and D ′′F that identify printi with print. This gives us the diagram in 1, and we apply
a formal construction similar to the one from Example 2.3 to the pairs D ′T ,D

′′
T and D ′F ,D

′′
F to form DT

and DF for the DSL D .

Our goal is to refine the sketch in Example 2.5 into precise mathematical ideas that are constructive
to dispel any ambiguity so as to allow for the formalization of a syntactical model for the composition
of high-level abstractions within our meta-DSL. For example, we need to make clear what operation we
are performing in lieu of a pushout in the category of sets from Example 2.3. This refinement leads to
several questions:

1. How do we mathematically identify a DSL as an operad?

2. If we identify DSLs with a subcategory of operads, how do we define composition of finitely many
DSLs, and does the composition always exist?

3. If composition exists, can it be made constructive and formalized?

These questions are at the intersection of our needs in LUMOS and constructive mathematics, and
their answers will provide solid footing for our formalization effort. However, our focus in this paper is
the formalization of operads in Coq, and we answer these questions in forthcoming work.

3 Informally Defining Operads

While there does not seem to be an agreed-upon precise definition for a symmetric colored operad,
or symmetric multicaegory, we follow the definition of a symmetric colored operad in [8]. However,
we note the definition in [8] does not include what is called the equivariance axiom in [9]; we too omit
this axiom, since it is not relevant to what we want to accomplish in our work on V-SPELLS. Regardless
of these distinctions, we use operad to mean symmetric colored operad, colored operad, or symmetric
multicategory throughout this paper.
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As our aim is to fully formalize the definition of an operad within Coq, we require precision, so we
provide the full informal definition of an operad below in two parts. The first part consists of the data
that comprises an operad.

Definition 3.1 (Data for an Operad) An operad O consists of a collection of objects, which we will
denote by T (usually referred to as colors), and for each n≥ 1, d ∈ T, and c := c0, . . . ,cn−1 a sequence
of objects in T , an object O

(d
c

)
in a category T, such that

1. for each d ∈ T , there is a designated element 1d ∈ O
(d

d

)
called the d-colored unit;

2. if c′ is a reordering of the sequence c, then there is an isomorphism in the category T:

O

(
d
c

)
∼= O

(
d
c′

)
;

3. for any sequence b of objects in T , if we denote by c•i b the sequence given by

c0, . . . ,ci−1︸ ︷︷ ︸
/0 if i = 0

,b,ci+1, . . . ,cn−1︸ ︷︷ ︸
/0 if i = n−1

,

then there is a function

◦i : O

(
d
c

)
×O

(
ci

b

)
→ O

(
d

c•i b

)
.

We call ◦i a multi-composition operator, and the act of using ◦i multi-composition.

Remark 3.2 In Definition 3.1, we define O
(d

c

)
to be an object in a category T. This is the most general

definition we will use, and in our examples and work, T will either be the category of sets or a subcategory
of the category of types in a programming language.

Example 3.3 For a quick example of what the type signature of the multi-composition operator may look
like, let c = c0,c1,c2; b = b0,b1; and i = 1; then ◦1 has type signature

O

(
d

c0,c1,c2

)
×O

(
c1

b0,b1

)
→ O

(
d

c0,b0,b1,c2

)
.

The data for an operad O in Definition 3.1 is subject to certain axiomatic constraints, and this forms the
second half of our definition for an operad.

Definition 3.4 (Axiomatic Constraints for an Operad) Let c := c0, . . . ,cn−1; b := b0, . . . ,bm−1; and
a = a0, . . . ,aℓ−1 be sequences from a collection of objects T . The axioms that the data for an operad O
from Definition 3.1 must follow are given below.

1. The horizontal associativity axiom: Suppose n ≥ 2 and 0 ≤ i < j ≤ n− 1, then for (α,β ,γ) ∈
O
(d

c

)
×O

(ci
a

)
×O

(c j
b

)
, then in infix notation:

(α ◦i β )◦ℓ−1+ j γ = (α ◦ j γ)◦i β . (3)

We visually describe this equality of terms in the commutative diagram in Figure 3.
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2. The vertical associativity axiom: Suppose m,n ≥ 1, 0 ≤ i ≤ n− 1, and 0 ≤ j ≤ m− 1. Then for
(α,β ,γ) ∈ O

(d
c

)
×O

(ci
b

)
×O

(b j
a

)
, in infix notation:

(α ◦i β )◦i+ j γ = α ◦i (β ◦ j γ). (4)

We visually describe this equality of terms in the commutative diagram in Figure 4.

3. The left unity axiom requires that for α ∈ O
(d

c

)
with n≥ 1, 1d ◦1 α = α.

4. The right unity axiom requires that for n≥ 1, 0≤ i≤ n−1, and α ∈ O
(d

c

)
, α ◦i 1ci = α .

Before we give an example, some comments are in order about Definition 3.4.

Remark 3.5
We give some insight into how we would have to handle some issues in the typing of the horizontal and
vertical associativity axioms of Definition 3.4 that arise in Coq. First notice the term on the left-hand side
of Equation 3 is in O

( d
(c•ia)•ℓ−1+ jb

)
, while the term on the right-hand side of Equation 3 is in O

( d
(c• jb)•ia

)
.

In order for this to make since, we need to demonstrate the following equality of sequences in T :

(c•i a)•ℓ−1+ j b = (c• j b)•i a. (5)

The left-hand side of the above equation yields:

(c•i a)•ℓ−1+ j b = (c0, . . . ,ci−1,a,ci+1, . . . ,cn−1)

= c0, . . . ,ci−1,a,ci+1, . . .c j−1,b,c j+1, . . . ,cn−1

and this expression, using that i < j, is given by (c• j b)•i a. In particular, we have the equality in 5. This
equality provides an equality of objects in the category T:

O

(
d

(c•i a)•ℓ−1+ j b

)
= O

(
d

(c• j b)•i a

)
(6)

Hence in order to provide a definition in Coq for operads, we need to provide a proof that equation
5 holds for sequences in T .

A similar equality of sequences is required in our definition in Coq of the vertical associativity dia-
gram for its use as a casting function.

While our definition seems abstract, the next example helps clarify the roots of the abstraction found
in Definition 3.1 and Definition 3.4. Moreover, the next example will serve as the first application of our
formal definition of operads, as we will prove in Coq that our realization of an analogous example is an
operad according to our Coq specification.

Example 3.6 If we let T be a collection of sets which is closed under taking finite products, we can
define an operad SetsT by letting

SetsT

(
d

c0, . . . ,cn−1

)
:= Hom(c0×·· ·× cn−1,d).

Here, the hom-set on the right is the collection of all functions from the product of sets c0×·· ·× cn−1 to
the set d. Given c ∈ T , the identity function on c operates as the c-colored unit in SetsT

(c
c

)
= Hom(c,c).
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In this setting, we can explicitly define multi-composition ◦i from Definition 3.1 as follows: given f ∈
Hom(c0× ·· · × cn−1,d) and g ∈ Hom(b0× ·· · × bm−1,ci), the function f ◦i g ∈ SetsT

( d
c•ib

)
sends the

(n+m−1)-tuple (x0, . . . ,xi−1,y,xi+1, . . . ,xn−1) to the value f (x0, . . . ,xi−1,g(y),xi+1, . . . ,xn−1). All other
pieces of Definition 3.1 and 3.4 not mentioned above can be proved for SetsT using everything defined
above and basic facts in set theory.

We discuss a difference between our definition of operads and the definition found in [9].

Remark 3.7 The definition for operads in [9] specifies that if c = /0, the empty sequence of symbols
coming from the collection T , then the symbol O

(d
/0

)
still has, potentially ambiguous, meaning. Notice

that in Definition 3.1 we do not allow the existence of such a symbol, since we require that the list c is
not empty. Our reason for doing so is that our main application relies on giving a version of Example
3.6 in Coq. Within SetsT , if c = /0, then the product of an empty list of sets is a singleton, {•}, so that
SetsT

(d
/0

) ∼= SetsT
( d
{•}

)
. We can model this situation in Coq by letting c be the list whose only entry is

unit : Type, which is the type in Coq with a single nullary constructor.

Next, we describe operads for the category of types in a programming language, and we note its
similarity to the Example 3.6.

Example 3.8 Let T be a collection of types in a programming language. If c = c0, . . . ,cn−1 : list T and
d : T , then we consider the function type

TypeT

(
d
c

)
:= c0→ ··· → cn−1→ d. (7)

Then terms of type TypeT
(d

c

)
are n-ary functions with codomain c and return type d. The multi-composition

operator ◦i takes f : TypeT
(d

c

)
,g : TypeT

(ci
b

)
, and returns the function f ◦i g : TypeT

( d
c•ib

)
. Then f ◦i g

acts on x0, . . . ,xi−1,y,xi+1, . . . ,xn−1 (where x j : c j and y j : b j) by returning f x0 · · · xi−1 (gy)xi+1 · · · xn−1.
Here we forego parentheses in similarity to Coq syntax. We note the action of ◦i here is essentially a
curried version of the action of ◦i in Example 3.6.

If T is the collection of all types in a given programming language, we denote this operad by Type.

4 Formally Modeling Operads in Coq

In creating a definition for the object O
( d

c0,...,cn−1

)
in Coq, Definition 3.1 requires that d,ci come from

a collection T . Throughout our specification in this paper, we will replace the collection of objects T
with Type, one of Coq’s in-house universes. In practice, we do need a proper subset of Type, but for
simplicity in our paper, we use Type. In the event we need a restriction to a subset of Type, we briefly
discuss how to use Tarski universes to do this after the description of our formal model in Coq.

4.1 Defining an Operad in Coq

The first goal to tackle in defining an operad in Coq is giving a definition of O
(d

c

)
that can be formalized.

Note 4.1 (A Definition for O
(d

c

)
in Coq) Informally, we can think of O as a collection of sets: the

O
(d

c

)
. Since we want the O

(d
c

)
to be distinct, this is a collection of distinct types, so it is natural to use a

record in Coq to define O .
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We create this record in Coq, which we denote as Operad, whose single field is given by a function
with type signature Type→ listType→Type. An instantiation of Operad will yield a function O : Type→
listType→ Type, so that O

(d
c

)
yields our desired object in Type. Within Coq, this means that f : O

(d
c

)
is

equivalent to regarding f as a term in O
(d

c

)
.

Remark 4.2 We note that Example 3.8 with T = Type gives an informal definition of the main operad
that we want to formalize within Coq, as well as providing a concrete example of how we will use the the
definition of an operad in Coq. We denote this operad by Type.

In the rest of our definition of an operad in Coq, we also use a record to denote the data that comprises
an operad as in Definition 3.1, and the constraints the data is subject to, as in Definition 3.4. In particular,
each piece in Definition 3.1 and 3.4 will be either a type in Coq that must be instantiated or a proposition
in Coq that must be satisfied. We first detail how the data from Definition 3.1 will be encoded as types
and propositions within Coq.

Note 4.3 (Data for an Operad in Coq) We encode the data from Definition 3.1 as follows.

1. The existence of a c-colored unit in O (1 from Definition 3.1): for all c : Type, there is a term 1c of
type O

(c
c

)
;

2. the requirement that there is an isomorphism between O
(d

c

)
and O

( d
cσ

)
for a permutation σ on n

letters in Type (2 from Definition 3.1): for all d : Type, c,c′ : listType with the length of c at least
1 and c and c′ permutations of one another, there is a bijection between O

(d
c

)
and O

(d
c′
)

in Type;

3. the requirement for the existence of ◦i (3 from Definition 3.1); for all i,n : N, d,ci : Type, b,c :
listType, if c has length n, 1 ≤ n, i < n, and the nth entry of c is ci, there is a function of type
O
(d

c

)
×O

(ci
b

)
→ O

( d
c•ib

)
.

Remark 4.4 To make our implementation in Coq in Note 4.3 clearer, some remarks are in order about
how to make the above precise within Coq.

1. To create a proposition that two lists, c, c′, are permutations of one another in Coq, we use Coq’s
built-in type Permutation. The proposition is written as Permutationc c′ : Prop (where Prop is the
type of all propositions in Coq).

2. In 3 of Note 4.3, we need the use of the nth function within Coq. This function requires a default
element as part of its arguments, which means we would need to choose a default element from
Type to use consistently throughout. The choice we make in Coq is unit : Type, which is the type
used to represent singleton sets. However, we note the care we take with indices in all relevant
proofs in our constructions to prevent the nth function from returning its default.

We encode Definition 3.4 into Coq in a similar manner, bundling it together into a record we denote
by operadLaws. Before we discuss the encoding of Definition 3.4, we provide a thorough and concrete
example of our Coq syntax that is necessary to define 2 of Note 4.3.

Example 4.5 We first define isomorphism in Type in Coq in the standard way: two types X and Y in
Type are isomorphic if and only if there exists functions f : X →Y and g : Y → X that are inverse to one
another; this is not difficult in Coq. We denote this definition by iso.
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Next, we need to define in Coq what O
(d

c

)
will actually represent as discussed in Note 4.1. First, we

define the general record in Coq from Note 4.1 and simplify its notation:

RecordOperad : Type := {interp : forall(d : Type)(c : listType),Type}.

Notation"operad (d, c)" :=(interp operad d c)(at level 10)

Using everything we have written so far, we can make a definition for 2 in Note 4.3 in Coq.

RecordoperadLaws(operad: Operad) : Type :=

{perm: forall(cc′ : listType)(d : Type),
Permutationcc′→ iso(operad(d,c))(operad(d,c′))}.

This Coq syntax provides the exact proposition described in Note 4.3 and Remark 4.4. We note that
in our full definition in Coq, the record OperadLaws will also have all of the data described in Definition
3.1 and 3.4, as opposed to just the syntax above which contains only a single field.

Next we discuss the specification of the axioms of Definition 3.4 in Coq. Here, the method of
definition in Coq is similar to Example 4.5 but requires more care. This is due in part to the need to
define casting functions in order to provide the proper definition in Coq. While there are four axioms,
and each comes with its casting function, we present an explanation of work on the definition of the
horizontal associativity axiom in Coq (1 of Definition 3.4), as it best showcases how we define these
axioms in Coq.

Note 4.6 (Axioms for an Operad in Coq) The horizontal associativity axiom in an operad (1 in Defi-
nition 3.4) can be defined in Coq by first listing a collection of parameters that we refer to as P:

• n,m, ℓ, i, j : N;

• d,ci,c j : Type;

• a,b,c : listType

• α : O
(d

c

)
,β : O

(ci
b

)
,γ : O

(b j
a

)
• 2≤ n, 1≤ m, and 1≤ ℓ;

• i < j and j < n;

• c has length n, b has length m, and a has length ℓ;

• the ith entry of c is ci and the jth entry of c is c j;

Using what is now in P, we give a proof that the ith entry of c • j b (see 3 of Definition 3.1 for the
definition of •) is ci, and a proof that the (ℓ− 1+ j)th entry of c •i a is c j; we add these proofs to P.
With this update to P, we can state our formalization of the horizontal associativity axiom in Coq: for
all parameters that comprise P, Equation 6 in Remark 3.5 holds, and there exists a type casting function
Ch-assoc such that

Ch-assoc P((α ◦i β )◦ℓ−1+ j γ) = (α ◦ j γ)◦i β (8)

The type-casting function Ch-assoc is necessary, since we have defined in Coq for each d : Type and
c : listType that O

(d
c

)
be a type in Type, and the casting function provides a way of moving between the
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10 Formalizing Operads for a Categorical Framework of DSL Composition

types in the equality of Equation 6. However, the existence of Ch-assoc relies entirely on the proof of the
equality of lists in Equation 5. Now the equality in Equation 5 requires a significant effort, and the most
difficult part of specifying this formal model of operads in Coq of this axiom is in providing the proof of
the equality of lists in Equation 5.

Providing a formal specification of all other axioms in Definition 3.4 to be inserted into the fields of
of the record operadLaws follows the same path as above:

1. carefully curate the correct collection P of parameters needed for the axiom;

2. add in any proofs needed that can be deduced from everything currently in P;

3. show that any required equality of lists holds (this will be necessary for all axioms in Definition
3.4);

4. create the necessary casting function.

To give an idea of what theorems on list equality we need to prove in Coq to define the necessary
casting function, we give an explicit example of the theorem on list equality needed in Coq to define the
horizontal associativity axiom from Note 4.6.

Example 4.7 Since the syntax c •i b is just the insertion of the list b into the list c in the ith position,
this is easy to define in Coq. We call this operation insert, and it has parameters i (a natural number),
and lists a,b,c that are of type listA, for A : Type. With this, we can write the theorem in Coq that is the
equality of lists in Equation 5.

TheoremhorizInsert : f orall (nmℓ i j : nat)(abc : listA),

2≤ n→ 1≤ m→ 1≤ ℓ→ i < j→ j < n→
lengthc = n→ lengtha = ℓ→ lengthb = m→
insert(ℓ−1+ j)(insert ica)b = insert i(insert j cb)a.

A proof of this theorem in Coq is not trivial, and can be found in our repository [3].

4.2 Tarski Universes

A solution to using a subset T of Type is to define T in Coq as a Tarski universe. This defines T : Type
via an interpretation function that allows the terms of T to be regarded as symbols for types within Type.
In this way, we can regard T as a set with an injective mapping to Type, which is exactly the data for a
subset of Type. Our approach to implementing this definition in Coq involves the following:

1. a type B in Coq with nullary constructors, which we call the base types, and whose terms we
refer to as type sigils;

2. the constructors that define the type T , which include:

• a constructor with signature Ty : B→ T which encodes the base types into T ;
• other constructors, with signatures such as p : T → T → T , or fn : T → T → T , which will

be used to model products or functions, respectively ;

3. an assignment for B within Type, and a recursively-defined interpretation function El : T → Type
that assigns a value within Type to each t : T .
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To help better understand this formalization, we give an example of what this would look like in Coq.

Example 4.8 In this example, the collection of base types B will consist of only three type sigils: n,b,
and u. We define B in Coq as an inductive type with nullary constructors.

InductivebaseTypes : Type := n |b |u.

We also need a an interpretation function for these sigils within Coq.

DefinitionbaseInterp(b : baseTypes) : Type :=

matchbwith

|n⇒ nat

|b⇒ bool

|u⇒ unit

end.

We now use an inductive type to define the subset T of Type that we will use, noting that the p and fn
constructors will be used to model product and function types.

InductivebaseTypes : Type :=

|Ty : baseTypes→ T

| p : T → T → T

| f n : T → T → T.

Lastly, we have to define the recursive function El in Coq.

FixpointEl(t : T ) : Type :=

matcht with

|(Tyt)⇒ baseInterpt

|(pAB)⇒ prod(El A)(El B)

|( f nAB)⇒ El A→ El B

end.

For an explicit example, the syntax p(Tyn)(Tyn) : T is evaluated to nat∗nat : Type in Coq via El.

5 A Proof in Coq Using Our Model

In this section, we give an implementation of the operad Type from Example 3.8 and show it is an operad
using our formal definition in Coq of operads from Section 4. Our definition of an operad in Section 4
was a series of records, so a proof that our implementation of Type in Coq is an operad will consist of
instantiating each field of those records.

First we discuss our implementation of Type in Coq, and then we show this implementation has all
of the data of Definition 3.1 and Definition 3.4 by instantiating each field in the record OperadLaws that
would occur from the information in Note 4.1, Note 4.3, and Note 4.6. We give a clear path to this below.
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12 Formalizing Operads for a Categorical Framework of DSL Composition

Remark 5.1 To demonstrate in Coq that our implementation of Type is an operad, we need to:

1. give meaning to Type
(d

c

)
in Coq by defining the interpretation function in the field of the record

Operad (see Note 4.1 and Example 4.5);

2. define for c : Type, the c-colored units (1 of Definition 3.1);

3. provide a proof that Type
(d

c

)∼= Type
(d

c′
)

for c′ a reordering of c (2 of Definition 3.1);

4. define the multi-composition operators of Type in Coq (3 of Definition 3.1);

5. show all axioms in Definition 3.4 hold according to our definitions created in Section 4.

Then all data from Remark 5.1 will provide an instantiation of the records Operad and OperadLaws
(see Example 4.5 for the definition of these records in Coq), and this will provide a proof in Coq that
Type is an operad.

Note 5.2 (Defining Type
(d

c

)
) In Example 3.8, we give the definition of the required interpretation func-

tion of the record Operad of Note 4.1 (i.e., the function interp defined in Example 4.5) for Type: given
c = c0, . . . ,cn−1 : list Type and d : Type, we write

Type
(

d
c

)
:= c0→ ·· · → cn−1→ d. (9)

In other words, Type
(d

c

)
is the type of n-ary functions with codomain defined by c and return type d.

The right-hand side of Equation 9 can be computed via a recursive function, which we denote as arr
(short for arrow). The function arr has type signature listType→ Type→ Type, and has arr []d = d,
and arr(c :: cs)d = c→ (arrcsd).

We note in this definition of arr, we are taking our motivation from Example 3.6 that the product of
an empty collection of sets is a singleton, and there is a bijection between Hom({•} ,S) and S for any set
S (see Remark 3.7).

This gives 1 from Remark 5.1.

5.1 Defining the Data for the Operad Type in Coq

Next we discuss, in a series of notes, the implementation of Definition 3.1 for the operad Type in Coq,
as well as the tools that were developed for use in this implementation.

Note 5.3 (c-colored units in Type) If c has single entry c : Type, then Type
(c

c

)
= c→ c, which is the

type of all functions with codomain and domain c. Then 1c := idc, the identity function on c.

Note 5.4 (Type
(d

c

)∼= Type
(d

c′
)
) Our motivation is to provide an analogous isomorphism that occurs in

the operad of sets, SetsT . The isomorphism, from Example 3.6, is:

Hom(c0×·· ·× cn−1,d)∼= Hom(c′0×·· ·× c′n−1,d), (10)

where c = c0, . . . ,cn−1, and c′ = c′0, . . . ,c
′
n−1 a reordering of c.The isomorphism 10 in the context of Coq

would mean we need to construct a bijection between Type
(d

c

)
and Type

(d
c′
)
. Following the definition in

Note 4.1 and comments in Remark 4.4, we can translate this into Coq for Type as: for all d : Type, c,c′ :
list Type with the length c at least 1, and Permutationcc′, there is a bijection between Type

(d
c

)
,Type

(d
c′
)
.

We can prove this in Coq using induction on the length of c, along with some preceding lemmas about
the behavior of function composition and isomorphism in Type, noting we would be using the definition
of function composition and isomorphism in Type as discussed in Example 4.5.
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Note 5.5 (◦i for Type) Lastly, we need 3 of the definition in Note 4.3 for Type in Coq. Choosing to write
Type

(d
c

)
in a curried form, as opposed to using a verbatim translation of SetsT

(d
c

)
from Example 3.6,

provides the needed flexibility, via partial application, to implement the multi-composition operator ◦i

for Type in Coq. The most important piece of our definition in Coq for ◦i is that we define a recursive
function compose with type signature

arrc′ (t→ t ′)→ arrbt→ arrc′ (arrbt ′),

where t, t ′ : Type, and c′,b : list Type. We defer to our repository [3] for the details of how compose is
defined, but we notice it provides the correct type signature for ◦i. For, if f : Type

(d
c

)
,g : Type

(ci
b

)
, then,

provided c is given by c0, . . . ,ci−1,ci,ci+1, . . . ,cn−1, we let c′ = c0, . . . ,ci−1, t = ci, and t ′ = ci+1→ ·· · →
cn−1→ d, then compose f g : Type

( d
c•ib

)
.

5.2 Defining the Axioms for the Operad Type in Coq

Definition 3.1 provides the data that comprises an operad, while Definition 3.4 provides the constraints
this data is subject to. We now discuss putting these constraints into Coq using the implementation for
the data in Subsection 5.1.

As in the specification of the horizontal associativity axiom (1 of Definition 3.4) in Note 4.6, we
keep our discussion focused on the horizontal associativity axiom, as the proof that our implementation
of Type satisfies all other axioms in Coq follows from similar arguments.

We define the horizontal associativity axiom for Type as a proposition using the definition of the
horizontal associativity axiom in Coq from Note 4.6. In this situation, we are rephrasing Equation 3
using the compose function from Note 5.5.

Our first hurdle in this direction comes from noticing that Coq does not automatically recognize the
equality of types,

arrc′ (arrbt) = arr(c•i b)d. (11)

Where, c = c0, . . . ,ci−1,ci,ci+1, . . . ,cn−1, c′ = c0, . . . ,ci−1, and t = ci+1→ ·· · → cn−1→ d, so that,
as in 3 of Definition 3.1, c•i b = c0, . . . ,ci−1,b,ci+1, . . . ,cn−1.

In Coq, we are taking f : arrcd and g : arrbci, so that compose f g has type given by the left-hand
side of Equation 11. However, in our definition of operads in Coq, we define f ◦i g (which is represented
by compose f g) to have type Type

( d
c•ib

)
, which is given by the right-hand side of Equation 11, hence

this presents an immediate problem. As in Note 4.6, our solution here is through type casting.
Much of the proof that our implementation of Type in Coq is an operad according to our specification

is accomplished through the use of type casting functions, and we now discuss the tools we developed
in this direction. First, we give the definition we use for a type cast within Coq, and then supply the Coq
syntax for it.

Definition 5.6 Given A,B : Type, and an equation, A = B, a type cast, CA=B, is a function such that for
a : A, CA=B a : B.

We easily define a type cast in Coq as function that takes as parameters the type equation A = B, for
A,B : Type, and a term e : A. In order to manipulate the type casts that occur throughout our proof that
Type satisfies the formalization of Definition 3.4, we prove a handful of general facts about type casts in
Coq, which we discuss below.
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14 Formalizing Operads for a Categorical Framework of DSL Composition

Note 5.7

1. The composition two type casts is a type cast: given equations of types A = B and B = C, then
CB=C ◦CA=B = CA=C.

2. A type cast using an equation of types A = A (i.e., a type cast between two types Coq recognizes
as identical) is equal to the identity: CA=A a = a for a : A.

3. Two type casts between the same two types (i.e., both using equations of type A = B) are equal:
for all a : A, CA=B a = C ′A=B a.

4. Given a type equality B = C, we also have another type equality, A→ B = A→ C. In partic-
ular, we have two associated type casts: CA→B=A→C and CB=C. If f : A→ B and a : A, then
(CA→B=A→C f )a = CB=C ( f a).

The statements of Note 5.7 smooth the process of showing Type satisfies the formalization of Defi-
nition 3.4, as this involves manipulations of several type casts. For example, 2 and 3 of Note 5.7 ensure
that it is not necessary to keep track of how these manipulations impact the equations on which the type
casts rely, since we need only that the types involved match in order to show equality.

Proving the statements in Note 5.7 are not difficult, and we provide the syntax of our proof for 2 of
Note 5.7 as an example.

Example 5.8

Lemma typecastSelf{A : Type}(eq : A = A)(x : A) :

typecast eqx = x.

Proof.
unfold typecast.

rewrite← Eqdep.Eq_rect_eq.eq_rect_eq.

reflexivity.

Qed.

The proof is relatively straightforward, and relies on Coq’s eq_rect_eq axiom, which is true of the
proofs of all statements in Note 5.7 except 1. The proofs of the other statements in Note 5.7 are proved
similarly.

Now we discuss how to utilize the statements of Note 5.7 in the proof that the horizontal associativity
axiom (1 of Definition 3.4) is satisfied by our implementation of Type in Coq. Our first step is to prove
the following key equality involving the compose function. We want to show that

compose(C (compose(C α )β ))γ (12)

is equal to
C (compose(C (compose(C α )γ ))β ). (13)

Here, α,β ,γ are terms of the appropriate types in Type, and the equations that decorate type casts
have been suppressed from the notation. If we step back for a moment and compare the terms in 12 and
13 to the terms in Equation 5 for the horizontal associativity axiom, we notice that 12 is representing the
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right-hand side of Equation 5, and 13 the left-hand side of Equation 5. To make clear why, recall that
compose formalizes the multi-composition operator ◦i, and that if all type casts are ignored in 12 and
13, then we arrive at the terms on both sides of Equation 5.

We can show equality between the terms in 12 and 13 by induction on the appropriate lists and
several uses of 4 of Note 5.7. The remainder of the proof that the formalization of the horizontal asso-
ciativity axiom holds in our implementation of Type requires more manipulations of type casts using the
statements of Note 5.7.

Demonstrating that the remainder of the formalized axioms of Definition 3.4 holds for our imple-
mentation of Type in Coq follows a similar pattern: translate the formalization of the axiom in our
specification to an appropriate equality involving the use of the compose function and suitable type
casts, and show this equality holds by using the statements on type casts in Note 5.7.

Remark 5.9 Our initial aim was to use operads to mathematically specify syntactical models of domain-
specific languages, so that we can also mathematically define composition of these syntactical models.
In this vein, the denotational semantics of the meta-DSL had been cast aside in this effort. However, we
note that the proof built in this section constructed an operad that has denotational semantics by viture
of being defined in Coq. In particular, this operad lives in the Calculus of Inductive Constructions and a
more general DSL can be built from the terms from this operad.

6 Related Work

In [6], the authors present a formalization of a simpler type of an operad using Cubical Agda, which is
an extension of Agda with Cubical Type Theory. Cubical Type Theory is an alternative to Homotopy
Type Theory that is more directly amenable to constructive interpretations, so fully understanding their
specification of operads in [6] requires a working knowledge of a variant of Homotopy Type Theory, as
well as knowledge of Agda.

Moreover, Agda does not have significant automation, so showing, for example, our proof in Section
5 would require significantly more work. Nevertheless, we believe it would be possible to translate our
work into Agda, albeit with much more boilerplate code (e.g., handwritten structural induction tactics).

We also compare what was formalized in our work to that of [6]. The work in [6] uses an operad in
the same sense we do, but its set of colors T always has |T |= 1. In particular, O

(d
c

)
can be parametrized

by the natural numbers, so we can write P(n) := O
(d

c

)
, if |c|= n, where c has ci = d for all i. There is

also a unique identity, 1 ∈P(1)); the functions ◦i have type signature P(n)×P(m)→P(n+m−1);
and there is a significant simplification of the associativity axioms (1 and 2 of Definition 3.4). We also
note [6] defines its operads as having the equivariance axiom given in [9], which we did not include
since it was unncessary for our applications in V-SPELLS.
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7 Appendix

In this appendix, we put figures that are helpful for understanding the main body of the paper and easily
referenced.

7.1 Diagrams for Pushouts

The commutative diagram for a pushout D of a diagram 1 in the category D.

D D ′′

D ′ Z

i′′

i′ f ′′

f ′

Figure 1: A pushout in D

The commutative diagram for the universality property that a pushout D of a diagram 1 must satisfy
in the caegory D.

E

D D ′′

D ′ Z

u

i′′

j′′

i′j′ f ′′

f ′

Figure 2: Universality of a pushout in D
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7.2 Diagrams for Associativity Axioms in Operads

Here, we present commutative diagrams in Definition 3.4 that are not necessary to the immediate expo-
sition in that section, but help us understand what Equation 3 and Equation 4 are communicating.

O

(
d
c

)
×O

(
ci

a

)
×O

(
c j

b

)
(◦i, id)- O

(
d

c•i a

)
×O

(
c j

b

)

O

(
d
c

)
×O

(
c j

b

)
×O

(
ci

a

)

∼=

?

swap

O

(
d

(c•i a)•ℓ−1+ j b

)

◦ℓ−1+ j

?

∥

O

(
d

c• j b

)
×O

(
ci

a

)
(◦ j, id)

?
◦i - O

(
d

(c• j b)•i a

)
.

Figure 3: The horizontal associativity axiom
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O

(
d
c

)
×O

(
ci

b

)
×O

(
b j

a

)
(id,◦ j)- O

(
d
c

)
×O

(
ci

b• j a

)

O

(
d

c•i (b• j a)

)?
◦i

∥

O

(
d

c•i b

)
×O

(
b j

a

)

(◦i, id)

?

- ◦i+ jO

(
d

(c•i b)•i+ j a

)

Figure 4: The vertical associativity axiom
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