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By temporal resources we mean resources in programming whose usage is time-sensitive or -critical,
and which, while perhaps already physically available to a program, can be used or acted upon
only after a certain amount of time passes or some prescribed events take place. It has been shown
that such temporal aspects of resources can be modularly captured with a combination of graded
modal types and a graded-monadic effect system. In this paper, we develop this line of work further,
by accompanying this modal approach with a stateful time-aware operational semantics, which in
addition to explaining how programs behave computationally, can be used to analyse their run times
and also which temporal resources they operate with. In addition to basic type-safety, we prove our
semantics sound with respect to a temporal variant of the equational presentation of local state.

1 Introduction

The proper behaviour of programs usually depends on programmers correctly accessing and using re-
sources in the programs that they write. The allowed or required usage-patterns can often be specified
and checked using type systems and appropriately designed programming abstractions. For instance, this
might mean that the correct operation of a program requires one to use some resources (e.g., a file pointer)
linearly or uniquely [4, 6, 12, 24], some resources (e.g., a network channel) according to some prescribed
protocol specification [8, 28], and some resources in such a way that they always get finalised [2, 14].

Recently, the first author showed that in addition to controlling how programs use their resoruces,
type systems and carefully designed programming abstractions can be used to specify and check when
programs are allowed to use their resources in a mathematically structured and compositional way [1].
This approach employs time-graded modal types to specify when a resource can be accessed or used
by the program, importantly, also accounting for situations where the program might be physically in
possession of the resource long before it is allowed to safely use it. Such modal type-based specifications
are then combined with a graded-monadic effect system that is used to model time-passage at the type
system level, and to make it possible to access further such temporal resources as more time is spent in
a given program, either by explicitly blocking execution or by instead performing some useful work.

For example, by giving the operations disassemble, clean, primer, paint, and assemble output types
specifying how much time has to pass before another operation can use the resources returned by these
operations, the following code snippet typechecks in this modal approach only when enough time is spent
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in place of the comments, e.g., by working on assembling products on an adjacent production line:

let (partA,partB,partC) = disassemble product in

(∗ no time has to pass before using partA, partB, partC below ∗)
let (partB’,partC’) = clean (partB,partC) in

(∗ cleaning liquid has to vaporise before using partB’, partC’ below ∗)
let (partB”,partC”) = primer (partB’,partC’) in

(∗ primer has to dry before using partB”, partC” below ∗)
let (partB”’,partC”’) = paint (partB”,partC”) in

(∗ paint has to dry before using partB”’, partC”’ below ∗)
let product’ = assemble (partA,partB”’,partC”’) in

(∗ no time has to pass before using the assembled product’ in the rest of the code ∗)
. . .

In the above-mentioned work, these ideas are formalised in a modally typed, effectful core λ -
calculus, called λ[τ], which is equipped with a simple equational theory, and a presheaves and graded
monads based denotational semantics. In this paper, we develop this line of work further, by accompa-
nying this modal approach with an operational semantics, which in addition to explaining how programs
behave computationally, can be used to analyse their run times and which resources they operate with.

The paper is structured as follows: In Sect. 2, we review the λ[τ]-calculus introduced by the first
author for working with temporal resources and propose minor modifications to make it amenable to
an operational treatment. We also improve the treatment of variable renamings in λ[τ] compared to the
original paper. In Sect. 3, we define a stateful time-aware operational semantics for λ[τ] and prove it
type-safe. In Sect. 4, we further prove this semantics sound with respect to a temporal variant of the
equational theory of local state. We then review related work in Sect. 5 and conclude in Sect. 6.

We have formalised the variant of λ[τ] considered in this paper also in Agda [27], available at
https://github.com/rzgdmqt/temporal-resources/releases/tag/msfp-2024-submission. The formalisation
includes the definition of λ[τ], renamings and substitutions, progress and preservation theorems, includ-
ing necessary auxiliary results, and the equational theory defined in Sect. 4.2. It however lacks the proof
of equational soundness (Thm. 4.9), whose formalisation remains work in progress, specifically due to
the high number of renamings and substitutions applied to different variants of terms and term contexts.

2 Core Calculus for Temporal Resources

We begin by reviewing the λ[τ]-calculus introduced by the first author [1]. It is designed to capture the
essence of type-based specification of and programming with temporal resources. As noted above, we
also introduce minor modifications to the calculus to make it amenable to an operational treatment.

2.1 Terms

The λ[τ]-calculus is based on Levy et al.’s [16, 17] fine-grain call-by-value (FGCBV) calculus, extending
it with time-graded modal types, temporally aware algebraic effects and handlers, and an effect system.

https://github.com/rzgdmqt/temporal-resources/releases/tag/msfp-2024-submission
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Being based on FGCBV, λ[τ] distinguishes between values and computations, defined in Fig. 1. Val-
ues are standard from FGCBV: variables, constants, unit, pairing, and functions. Computations are also
largely standard from FGCBV: they include returning values, sequential composition, function applica-
tion, and pattern-matching. In addition, they include two kinds of algebraic operation calls [21, 22], ones
the programmer can redefine using effect handlers [23], written opV (x . M), where op belongs to a fixed
set O of operation symbols, and ones the programmer can use to introduce a time delay by blocking
execution of the program for a set amount of time τ , written delay τ M. The latter are treated primitively
in λ[τ] and are not redefinable using effect handling handle M with H to z in N. The last two computation
terms (box and unbox) act as the introduction and elimination forms for the time-graded modal types
used to specify temporal resources. In contrast to [1], where box is a value, in this paper we treat it as
a computation, so as to give it an operational treatment following the tradition of FGCBV, where only
computations execute and are given an operational semantics. The type system we review below then
ensures that a box and corresponding unboxes interact only when enough time is spent between them.

Value V,W ::= x variable∣∣ f(V1, . . . ,Vn) constant∣∣ ()
∣∣ (V,W ) unit and pairing∣∣ fun (x : X) 7→ M function

Computation M,N ::= return V returning a value∣∣ let x = M in N sequential composition∣∣ V W function application∣∣ matchV with {(x,y) 7→ N} pattern-matching∣∣ opV (x . M) algebraic operation call∣∣ delay τ M time delay operation∣∣ handle M with H to z in N effect handling∣∣ box[τ]X V as x in N boxing up a temporal resource∣∣ unbox[τ]X V as x in N unboxing a temporal resource

Effect handler H ::= (x . k . Mop)op∈O operation clauses

Figure 1: Values, computations, and effect handlers of λ[τ].

2.2 Types and Type System

Similarly to terms, λ[τ] distinguishes between value and computation types, defined in Fig. 2. Value types
include standard types from FGCBV: base, unit, product, and function types. In addition, they include the
time-graded modal type [τ]X , which is used to type and specify temporal resources. Its intuitive reading
is: a value of type [τ]X denotes an X-typed resource that can be accessed and used after at least τ time
units have passed, or differently, it gives a guarantee that in at most τ time units an X-typed resource is
ready for use. For instance, in the code snippet given in Sect. 1, the variable partB” could be typed with
the type [τprimer-dry]PartB and partC”’ could be typed with the type [τpaint-dry]PartC, where τprimer-dry and
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τpaint-dry specify the amount of time that a part has to dry. The computation type X ! τ specifies effectful
computations that return X-typed values and spend τ time units doing that. As in FGCBV, the bodies of
functions are effectful computations, so also the codomain of the function type gets a computation type.

For simplicity and concreteness, and similarly to [1], we only consider natural number valued grades
τ for modal and computation types, and context modalities and operation signatures below, leaving a
generalisation to other monoids of grades for future work. For instance, one option would be to replace
the monoid of natural numbers with sequences of program events for all grades. Another option would be
to consider different monoids, e.g., keeping natural numbers for the modal types and using sequences of
events for computation types, connected by a monoid morphism that calculates a program run time from
a sequence of events. This way one could change the granularity of type-based temporal specifications.

Time grade: τ ∈ N

Ground type A, B, C ::= b
∣∣ unit

∣∣ A×B
∣∣ [τ]A

Value type X , Y , Z ::= A
∣∣ X ×Y

∣∣ X → Y ! τ
∣∣ [τ]X

Computation type: X ! τ

(Variable) context Γ ::= /0
∣∣ Γ,x :X

∣∣ Γ,⟨τ⟩

Figure 2: Types and contexts of λ[τ].

Well-typed values and computations are specified using typing judgements Γ⊢V : X and Γ⊢M : X !τ .
The contexts Γ are defined in Fig. 2. In addition to containing variables, they also contain time-graded
modalities ⟨τ⟩, which are used to give the time-graded modal type [τ]X a Fitch-style presentation [5, 7].
In addition, this modality is used to track time-passage in computations in the type system. For instance,
when reading it from left to right, the context Γ = x :X ,⟨4⟩,y :Y,z :Z,⟨2⟩ describes that first a variable x
was brought into scope, then 4 time units passed, after which variables y and z were brought into scope,
after which 2 more time units passed. This way one can keep track of how many time units ago temporal
resources were brought into scope and whether they are allowed to be unboxed and used in a program (if
enough time has passed since, as specified by a context). For readability, we omit the empty context /0
whenever possible, e.g., when typing a closed value as ⊢V : X . The composition of two contexts Γ,Γ′ is
defined by recursion on Γ′. As usual, this composition is associative and the empty context /0 is its unit.

For defining well-typed terms, it is assumed that every constant f is assigned a base-typed signature
f : (b1, . . . ,bn)→ b and that every algebraic operation op in O is assigned a ground-typed time-graded
signature op : Aop → Bop !τop, where Aop is the type of inputs of op, Bop is the type of outputs of op, and
τop specifies how much time executing op takes. Importantly, both Aop and Bop can include modal types.

The typing rules are given in Fig. 3. They are in large part standard from FGCBV, modulo the
added context modalities and time-graded effect typing [11, 18, 25]. We only discuss the most important
temporal features. Returning values (RETURN) does not take time, so it is typed with X ! 0. In sequential
composition (LET), the context of the continuation N is not only extended with the variable x denoting
the value returned by M, but also with the modality ⟨τ⟩, expressing that before x is bound and N starts
executing an additional τ time units have passed. Similar temporal awareness also appears in the contexts
of the continuations of algebraic operation calls (OP and DELAY). The major temporal addition to the
typing of effect handlers and effect handling (HANDLE) involves wrapping the continuations k in modal
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types to ensure that an operation’s continuation is not resumed before the time prescribed by its signature.

VAR
x :X ∈ Γ

Γ ⊢ x : X

CONST
(Γ ⊢Vi : bi)1≤i≤n

Γ ⊢ f(V1, . . . ,Vn) : b

PAIR
Γ ⊢V : X Γ ⊢W : Y

Γ ⊢ (V,W ) : X ×Y

UNIT

Γ ⊢ () : unit

FUN
Γ,x :X ⊢ M : Y ! τ

Γ ⊢ fun (x : X) 7→ M : X → Y ! τ

RETURN
Γ ⊢V : X

Γ ⊢ return V : X ! 0

LET
Γ ⊢ M : X ! τ Γ,⟨τ⟩,x :X ⊢ N : Y ! τ

′

Γ ⊢ let x = M in N : Y ! τ + τ
′

APPLY
Γ ⊢V : X → Y ! τ Γ ⊢W : X

Γ ⊢V W : Y ! τ

MATCH
Γ ⊢V : X ×Y Γ,x :X ,y :Y ⊢ N : Z ! τ

Γ ⊢matchV with {(x,y) 7→ N} : Z ! τ

OP
Γ ⊢V : Aop Γ,⟨τop⟩,x :Bop ⊢ M : X ! τ

Γ ⊢ opV (x . M) : X ! τop+ τ

DELAY
Γ,⟨τ⟩ ⊢ M : X ! τ

′

Γ ⊢ delay τ M : X ! τ + τ
′

HANDLE
Γ ⊢ M : X ! τ Γ,⟨τ⟩,z :X ⊢ N : Y ! τ

′

H = (x . k . Mop)op∈O

(
∀τ

′′ . Γ,x :Aop,k : [τop] (Bop → Y ! τ
′′) ⊢ Mop : Y ! τop+ τ

′′)
op∈O

Γ ⊢ handle M with H to z in N : Y ! τ + τ
′

BOX
Γ,⟨τ⟩ ⊢V : X Γ,x : [τ]X ⊢ N : Y ! τ

′

Γ ⊢ box[τ]X V as x in N : Y ! τ
′

UNBOX
τ ≤ τΓ Γ− τ ⊢V : [τ]X Γ,x :X ⊢ N : Y ! τ

′

Γ ⊢ unbox[τ]X V as x in N : Y ! τ
′

Figure 3: Typing rules of λ[τ].

The introduction rule for modal types (BOX) allows us to box up a value V at a modal type [τ]X
if it is safe to use V at type X in the future after τ time units, as expressed by extending the context of
V with the modality ⟨τ⟩. Dually, the elimination rule for modal types (UNBOX) allows us to unbox a
boxed value V , but only when enough time has passed since V was boxed up or brought into scope (e.g.,
returned by an algebraic operation call). This is ensured by typing V in a τ time units earlier context
Γ− τ . This operation, taking a context Γ to a τ time units earlier state, is defined recursively as follows:

Γ−0 def
=Γ /0− τ+

def
= /0 (Γ,x :X)− τ+

def
=Γ− τ+ (Γ,⟨τ ′⟩)− τ+

def
=

{
Γ,⟨τ ′− τ+⟩, if τ+ ≤ τ ′

Γ− (τ+− τ ′), otherwise

where τ+ denotes a non-zero natural number. For instance, if we take the context x :X ,⟨4⟩,y :Y,z :Z,⟨2⟩
to a 5 time units earlier state, we are left with the context x :X ,⟨1⟩. Further, in the UNBOX rule, we write
τΓ for the time passage encapsulated by the context Γ. This operation is defined recursively as follows:

τ /0
def
=0 τ(Γ,x:X)

def
= τΓ τ(Γ,⟨τ⟩)

def
= τΓ + τ

The condition τ ≤ τΓ then ensures that at least τ time units have passed according to Γ. It is useful to
note that this condition, together with the operation Γ− τ , makes the modal fragment of λ[τ] an instance
of modal λ -calculi based on parametric right adjoints [7]. See [1] for more discussion on this connection.

In the rest of the paper, we find it convenient to write Γx,1,x :X ,Γx,2 = Γ for the splitting of Γ by some
variable x :X in it. In particular, using this notation, we have for every x : X ∈ Γ− τ , that τ ≤ τΓx,2 .
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2.3 Renamings and Admissible Rules

The value and computation typing judgements are closed under a number of expected admissible rules.
Proposition 2.1. Standard structural rules are admissible (where J ranges over both judgements):

Γ,Γ′ ⊢ J x :X ̸∈ Γ,Γ′

Γ,x :X ,Γ′ ⊢ J

Γ,x :X ,y :Y,Γ′ ⊢ J

Γ,y :Y,x :X ,Γ′ ⊢ J

Γ,x :X ,x′ :X ,Γ′ ⊢ J

Γ,x :X ,Γ′ ⊢ J[x/x′]

and additionally, the following typing rules are admissible for the time-graded context modalities:

Γ,⟨0⟩,Γ′ ⊢ J

Γ,Γ′ ⊢ J

Γ,⟨τ1 + τ2⟩,Γ′ ⊢ J

Γ,⟨τ1⟩,⟨τ2⟩,Γ′ ⊢ J

Γ,⟨τ⟩,Γ′ ⊢ J τ ≤ τ ′

Γ,⟨τ ′⟩,Γ′ ⊢ J

Γ,⟨τ⟩,x :X ,Γ′ ⊢ J

Γ,x :X ,⟨τ⟩,Γ′ ⊢ J

As in [1], this is easiest to prove by defining an appropriate notion of variable renamings, with the
desired rules then following from the action of specific renamings on well-typed values and computations
(using Prop. 2.2 stated below). Compared to [1], where such variable renamings were defined simply as
an inductively defined set, here we give them an equivalent, but more computational definition, directly
as certain functions from variables in one context to variables in another.

We write RenΓ Γ′ for the set of type-preserving renamings from the variables in context Γ to variables
in Γ′. For a ρ ∈ Ren Γ Γ′, given an x :X in Γ, we write ρ(x) :X for the corresponding variable in Γ′. In
order to ensure that renamings preserve all the desired temporal properties, we require additionally that
τΓ ≤ τΓ′ , and furthermore, that τΓx,2 ≤ τΓ′

ρ(x),2
, for all x :X ∈ Γ. That is, the set Ren Γ Γ′ is defined as

Ren Γ Γ
′ def
=

{
ρ : vars(Γ)→ vars(Γ′)

∣∣ τΓ ≤ τΓ′ ∧ ∀(x :X ∈ Γ). type(ρ(x)) = X ∧ τΓx,2 ≤ τΓ′
ρ(x),2

}
Our contribution is showing that in this way we can recover renamings corresponding to all the inductive
cases used in [1], such as, varr

x:X∈Γ
∈Ren (Γ,y :X) Γ and µ r ∈Ren (Γ,⟨τ1+τ2⟩) (Γ,⟨τ1⟩,⟨τ2⟩). The other

direction of this equivalence, namely, defining a function in Ren Γ Γ′ from an inductively defined renam-
ing, was already present in [1]. This way we can also define many other renamings useful later on, such as
different flavours of weakening renamings wkΓ′ ∈ Ren Γ (Γ,Γ′) and wkτ≤τ

Γ′ ∈ Ren (Γ,⟨τ⟩) (Γ,Γ′), when
τ ≤ τΓ′ , and a general congruence renaming congΓ′′(ρ) ∈ Ren (Γ,Γ′′) (Γ′,Γ′′), where ρ ∈ Ren Γ Γ′.

Given a renaming ρ ∈ Ren Γ Γ′, the action of ρ on values and computations, written V [ρ] and M[ρ],
respectively, is defined by straightforward mutual recursion on the structure of V and M. For renamings
ρ that do not change variable names or perform substitutions (such as weakening a context with new
variables or time passage), we typically omit ρ in V [ρ] and M[ρ], and simply write V and M.
Proposition 2.2. If ρ ∈ Ren Γ Γ′ and Γ ⊢V : X and Γ ⊢ M : X !τ , then Γ′ ⊢V [ρ] : X and Γ′ ⊢ M[ρ] : X !τ .

We conclude the overview of λ[τ] by noting that the standard rules for substitution are also admissible.
Proposition 2.3. If Γ,x :X ,Γ′ ⊢ J, Γ ⊢W : X, then Γ,Γ′ ⊢ J[W/x], where J ranges over both judgements.

3 Stateful Time-Aware Operational Semantics

In this section we equip λ[τ] with an operational semantics. As the purpose of λ[τ] is to provide a core
calculus for safe programming with temporal resources, where modal types are used to control when such
resources can be used and a time-graded effect system is used to track the run times of computations,
we wish the operational semantics to reflect these aspects of λ[τ], and to provide an alternative, dynamic
means for analysing the use of temporal resources and computations’ run times. To this end, we equip
λ[τ] with a stateful time-aware operational semantics, in which the states both track which resources are
being used by a program and provide a cost model for λ[τ]-programs by tracking their run time.
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3.1 States

We begin by defining the states S that we use in our operational semantics. They are given by

S ::= /0
∣∣ S,⟨τ⟩

∣∣ S,x 7→[τ]X V

A state is either empty (denoting that no resources have been boxed up and no time has passed in a
computation), an extension of a prior state with the time-graded modality ⟨τ⟩ (denoting that extra τ units
of time have passed), or an extension of a prior state with the resource mapping x 7→[τ]X V (denoting that
the value V has been boxed up in a computation). Analogously to contexts Γ, we also define operations
S− τ and τS on states. Their definitions are analogous to the operations on contexts, so we omit them.

In order to later be able to talk about well-typed computations being reduced in a state, we recursively
translate each state S into a corresponding context ΓS, given by the following definition:

ΓS
def
=


/0, if S = /0
ΓS′ ,⟨τ⟩, if S = S′,⟨τ⟩
ΓS′ ,x : [τ]X , if S = S′,x 7→[τ]X V

We also define the composition of two states S,S′, by straightforward structural recursion on S′. It is
associative, has the empty state /0 as its unit, and it is related to operations on contexts as follows:

Proposition 3.1.
1. For all S and τ , we have ΓS−τ = ΓS − τ .

2. For all S and S′, we have ΓS,S′ = ΓS,ΓS′ .

3. For all S, we have τΓS = τS.

4. For all S and S′, we have τS,S′ = τS + τS′ .

It is also useful to formally note that variables in the context ΓS get assigned very specific types.

Proposition 3.2. If x : X ∈ ΓS, then X = [τ]Y for some τ and Y , and also, x 7→[τ]Y V ∈ S, for some V .

Next, in order to express that in our operational semantics the states can only ever monotonically
“grow”, by extensions with time or resources, we define the following partial order S≤S′ on states:

S≤S

S≤S′

S≤ (S′,⟨τ⟩)
S≤S′

S≤ (S′,x 7→[τ]X V )

The monotonic growth aspect of states manifests both as state splittings and weakening renamings.

Proposition 3.3.
1. If S≤S′, then S′ = S,S′′, for some S′′.

2. If S≤S′, then τS ≤ τS′ .

3. If S≤S′, then there is a corresponding weakening renaming wkS≤S′ : ΓS⇝ ΓS′ .

Finally, for proving the correctness of our semantics, we identify well-formed states Γ ⊢ S, given by

Γ ⊢ /0

Γ ⊢ S

Γ ⊢ S,⟨τ⟩
Γ ⊢ S Γ,ΓS,⟨τ⟩ ⊢V : X x ̸∈ Γ,ΓS

Γ ⊢ S,x 7→[τ]X V

We define the relation Γ ⊢ S in a potentially open context Γ because that allows us to talk about the
well-formedness of composite states, namely, if Γ ⊢ S and Γ,ΓS ⊢ S′, then we can show that Γ ⊢ S,S′.
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3.2 Small-Step Reduction Relation

At the core of our operational semantics is the small-step reduction relation ⟨S | M⟩⇝ ⟨S′ | M′⟩ that
describes how a computation M can make one reduction step to a computation M′, with the step starting
in an initial state S and ending in a final state S′. The rules defining this relation are given in Fig. 4.

SEM-APP

⟨S | (fun (x :X) 7→ M)V ⟩⇝ ⟨S | M[V/x]⟩

SEM-MATCH

⟨S | match (V,W ) with {(x,y) 7→ N}⟩⇝ ⟨S | N[V/x,W/y]⟩

SEM-LET-CONG
⟨S | M⟩⇝

〈
S′ | M′〉

⟨S | let x = M in N⟩⇝
〈
S′ | let x = M′ in N

〉 SEM-LET-RET

⟨S | let x = (return V ) in N⟩⇝ ⟨S | N[V/x]⟩

SEM-LET-OP

⟨S | let x = (opV (y . M)) in N⟩⇝ ⟨S | opV (y . let x = M in N)⟩

SEM-HANDLE-CONG
⟨S | M⟩⇝

〈
S′ | M′〉

⟨S | handle M with H to z in N⟩⇝〈
S′ | handle M′ with H to z in N

〉
SEM-HANDLE-RET

⟨S | handle (return V ) with H to z in N⟩⇝
⟨S | N[V/z]⟩

SEM-HANDLE-OP
H = (x . k . Mop)op∈O

⟨S | handle (opV (y . M)) with H to z in N⟩⇝
⟨S | box (fun (y : Bop) 7→ handle M with H to z in N) as w in Mop[V/x,w/k]⟩

SEM-DELAY

⟨S | delay τ M⟩⇝
⟨S,⟨τ⟩ | M⟩

SEM-BOX〈
S | box[τ]X V as x in N

〉
⇝〈

S,x 7→[τ]X V | N
〉

SEM-UNBOX
y ∈ S〈

S | unbox[τ]X y as x in N
〉
⇝

⟨S | N[S[y]/x]⟩

Figure 4: Stateful time-aware operational semantics for λ[τ].

The rules corresponding to β -reduction steps for the computations inherited from FGCBV are stan-
dard, these are SEM-APP, SEM-MATCH, and SEM-LET-RET. In particular, they do not change the state.

The rule SEM-LET-OP allows operations to be pulled out from sequential composition. The rules
SEM-LET-CONG and SEM-HANDLE-CONG allow the first computation in sequential composition and
the computation being handled to make progress. The rule SEM-HANDLE-RET describes how return
values are handled. The rule SEM-HANDLE-OP expresses how effect handling replaces an algebraic
operation call with the corresponding case of the effect handler. This rule differs from the standard
operation handling rule [10, 23] in that here we have to box up the recursive call to effect handling as a
temporal resource before substituting it for the continuation k, as required by the typing of k.

The rule SEM-DELAY models the blocking of execution for a prescribed amount of time by delay by
extending the state by that time amount, with nothing else useful happening during that time period.

The rules SEM-BOX and SEM-UNBOX express how box and unbox behave analogously to memory
allocation and lookup operations. On the one hand, when the next computation to be executed is box,
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then the state is extended with the resource being boxed up and the continuation is executed next. On
the other hand, when the next computation to be executed is unbox, then we look up the corresponding
value (that was boxed up earlier) in the state and substitute it into the continuation before executing it.
Observe that this rule has a side-condition requiring the resource y being unboxed to be in the state S,
ensuring that the following a priori partial lookup operation is defined in the right-hand side of the rule:

S[x] def
=


V, if S = S′,x 7→[τ]X V
S′[x], if S = S′,⟨τ⟩ or S = S′,y 7→[τ]X V and x ̸= y
undefined, if S = /0

3.3 Type-Safety

We now prove type-safety for the semantics we defined in the previous section. As standard, we split
type-safety into theorems of progress (Thm. 3.7) and type preservation (Thm. 3.10) [29]. However,
before proving those theorems, we first establish temporal variants of commonly proved useful lemmas.

First, we formalise the intuition that states can only monotonically grow during program execution.

Proposition 3.4. If ⟨S | M⟩⇝ ⟨S′ | M′⟩, then S≤S′.

Next, we have a standard canonicity result for values. While this result is commonly proved for
values in an empty context, we have to prove it in open contexts of the form ΓS because both values and
computations can contain variables referring to the resources stored in the state during execution.

Proposition 3.5. If ΓS ⊢V : X ×Y , then there exist W1 and W2, such that V = (W1,W2), with ΓS ⊢W1 : X
and ΓS ⊢W2 : Y . Well-typed values in ΓS of unit and function type are also in their introduction forms.

The canonicity for values of the modal type [τ]X is a bit different. Namely, as there is no value
introduction form for [τ]X , then values of this type in a context ΓS are necessarily variables in ΓS.

Proposition 3.6. If ΓS ⊢V : [τ]X, then V = y for some y : [τ]X ∈ ΓS, or for y 7→[τ]X W ∈ S, for some W.

For stating and proving the progress theorem, we say that a computation M is in a result form, if
either M = return V , for some value V , or M = op W (x . N), for some value W and computation N.
These result forms are standard from calculi for algebraic effects and effect handlers [10].

The progress theorem then takes the following shape. While it is commonly stated in an empty
context, then analogously to the canonicity lemmas above, we have to state it in contexts of the form ΓS.

Theorem 3.7 (Progress). If ⊢ S and ΓS ⊢ M : X ! τ , then either M is in a result form and has stopped
reducing, or it is possible to make a reduction step ⟨S | M⟩⇝ ⟨S′ | M′⟩, for some S′ and M′.

Proof. The proof proceeds as usual by induction on the derivation of ΓS ⊢ M : X ! τ . See the Agda code
or the second author’s MSc thesis [30] for details. Here we only mention that in order to be able to apply
the rule SEM-UNBOX, the side-condition y ∈ S is satisfied because by applying Prop. 3.6 to the typing
derivation of ΓS − τ ⊢V : [τ]X , we get that V = y and y : [τ]X ∈ ΓS − τ . By Prop. 3.1, this is the same as
y : [τ]X ∈ ΓS−τ , which is the same as y ∈ S−τ according to Prop. 3.2. As a result, y ∈ S, as required.

For proving the progress theorem, we first establish standard inversion lemmas for typing rules.

Proposition 3.8. If Γ ⊢ (V1,V2) : X, then X = Y1 ×Y2 and Γ ⊢Vi : Yi, and analogously for other terms.

As there are no value introduction forms for [τ]X , then for its inversion-like lemma we establish the
following result, showing that values of type [τ]X in ΓS correspond to well-typed underlying X-typed
values. As we established in Prop. 3.6 that only such values are variables, we state this result as follows:
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Proposition 3.9. If ⊢ S and x : [τ]X ∈ ΓS, then (ΓS)x,1,⟨τ⟩ ⊢ S[x] : X.

We now prove the preservation theorem. It differs slightly from its usual form because applying the
reduction rules of our semantics can result in a computation whose run time is shorter than the original
one’s, e.g., when the original computation is a delay. However, the time lost from the computation’s run
time is accumulated in the state, giving us an invariant that expresses temporal type preservation.
Theorem 3.10 (Preservation). If ⊢ S and ΓS ⊢ M : X ! τ , and if ⟨S | M⟩⇝ ⟨S′ | M′⟩, for some S′ and M′,
then ⊢ S′ and there exists a τ ′, such that τS + τ = τS′ + τ ′ and ΓS′ ⊢ M′ : X ! τ ′.

Proof. The proof proceeds as usual by induction on the derivation of ⟨S | M⟩⇝⟨S′ | M′⟩, using Prop. 3.8
to invert the typing of ΓS ⊢ M : X ! τ based on the structure forced upon M by the reduction rules. See
the Agda code or the second author’s MSc thesis [30] for details. Here we only note that in the case
of SEM-UNBOX, where M = unbox[τ ′′]Y y as x in N, inverting the typing of ΓS ⊢ M : X ! τ and applying
Prop. 3.6 gives us that y : [τ ′′]Y ∈ ΓS − τ ′′, which is the same as y : [τ ′′]Y ∈ ΓS−τ ′′ by Prop. 3.1. Next,
applying Prop. 3.9, we get that (ΓS−τ ′′)y,1,⟨τ ′′⟩ ⊢ (S− τ ′′)[y] : Y , which is the same as (ΓS−τ ′′)y,1,⟨τ ′′⟩ ⊢
S[y] : Y , because ⊢ S contains no repeated variables. Finally, by observing that (ΓS−τ ′′)y,1 = (ΓS)y,1
and τ(ΓS−τ ′′ )y,2

+ τ ′′ = τ(ΓS)y,2 , which means that τ ′′ ≤ τ(ΓS)y,2 = τy:[τ ′′]Y,(ΓS)y,2 , we can apply the renaming
wkτ ′′≤τy:[τ ′′]Y,(ΓS)y,2

∈ Ren ((ΓS)y,1,⟨τ ′′⟩) ΓS to show that ΓS ⊢ S[y] : Y , giving us ΓS ⊢ N[S[y]/x] : X ! τ .

3.4 Modelling Top-Level Runtime Environment

We conclude this section by noting that in our operational semantics any unhandled algebraic operation
calls will result in the evaluation stopping in a result form. In order to keep the presentation simpler
and to the point, we did not include any support for default “top-level” implementations of unhandled
algebraic operation calls, in particular, as there are many different ways how this could be achieved.
In an implementation based on λ[τ], we envisage the operational semantics defined in this paper being
intertwined with a top-level runtime, which executes unhandled operation calls and then hands the control
back to the operational semantics. These implementations of algebraic operations could be as simple as
a fixed rule ⟨S | opV (x . M)⟩⇝⟨S,⟨τop⟩ | M[valop(V )/x]⟩ for each op : Aop → Bop !τop, where valop(V )
is some value of type Bop depending on V . However, one can imagine that these implementations could
be user-provided as well, either as an effect handler or a runner [2]. Moreover, such implementations
could also be given access to the runtime of the implementation language, such as to OCaml or Haskell.
We leave exploring all these different options for future work on a prototype implementation of λ[τ].

4 Equational Soundness

In this section we accompany the basic type-safety results of the previous section with an additional cor-
rectness guarantee, expressed as a soundness theorem with respect to a temporal variant of the standard
equational presentation of the computational effect of local state [19, 21, 26]. This way we are able to
demonstrate that our stateful operational semantics agrees with a well-understood notion of computation.

4.1 Computation Term Contexts

Before we can define the equational theory of interest, we first define computation term contexts K, which
we use in the equational theory to abstract over computations that have to take enough time to run:

K ::= [ ]
∣∣ opV (x . K)

∣∣ delay τ K
∣∣ box[τ]X V as x in K

∣∣ unbox[τ]X V as x in K
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We write the composition of two computation term contexts K and K′ as K[K′], defined recursively
by filling the hole in K with K′. This composition is associative and the hole [ ] is its unit. By a similarly
straightforward recursion, we also compute how much time is spent in a K (by calling algebraic operations
and delays) before arriving at the hole [ ], and which variables are bound between the root of K and the
hole [ ], which we write as τK and ΓK, respectively. The latter includes all the variables bound between
the root of K and [ ], both those bound by algebraic operations, and those bound by box and unbox.

Well-formed computation term contexts are defined using the judgement Γ ⊢ K : τ , given by the rules

Γ ⊢ [ ] : 0

Γ ⊢V : Aop Γ,⟨τop⟩,x :Bop ⊢ K : τ

Γ ⊢ opV (x . K) : τop+ τ

Γ,⟨τ⟩ ⊢ K : τ
′

Γ ⊢ delay τ K : τ + τ
′

Γ,⟨τ⟩ ⊢V : X Γ,x : [τ]X ⊢ K : τ
′

Γ ⊢ box[τ]X V as x in K : τ
′

τ ≤ τΓ Γ− τ ⊢V : [τ]X Γ,x :X ⊢ K : τ
′

Γ ⊢ unbox[τ]X V as x in K : τ
′

Observe that the type of a well-formed computation term context Γ ⊢ K : τ specifies only its run time τ ,
which is easy to see to coincide with the time τK computed above. The judgement is polymorphic in the
type of return values, allowing us to fill the hole in a K with any computation term M, written as K[M].

Both K[K′] and K[M] preserve the well-typedness of the involved computation term contexts and
computations, as shown in the next proposition. In particular, observe that K′ and M can refer to the
variables ΓK bound by K, and that the run times are added together, analogously to let and handle.
Proposition 4.1.

1. If Γ ⊢ K : τ and Γ,ΓK ⊢ K′ : τ ′, then Γ ⊢ K[K′] : τ + τ ′.

2. If Γ ⊢ K : τ and Γ,ΓK ⊢ M : X ! τ ′, then Γ ⊢ K[M] : X ! τ + τ ′.
Further, by straightforward recursion, we define actions of renamings and substitution on computa-

tion term contexts, written K[ρ] and K[V/x], respectively. They satisfy analogous properties to Props. 2.2
and 2.3. Additionally, they are related to the respective operations on computations as follows:
Proposition 4.2.

1. If ρ : Ren Γ Γ′ and Γ ⊢ K : τ and Γ,ΓK ⊢ M : X ! τ ′, then K[M][ρ] = K[ρ][M[congΓK
(ρ)]].

2. If Γ,x :X ,Γ′ ⊢K : τ and Γ,x :X ,Γ′,ΓK ⊢M : Y !τ ′ and Γ⊢V : X, then K[M][V/x] =K[V/x][M[V/x]].
As before, we omit renamings ρ when they do not change variable names or perform substitution.

4.2 Equational Theory for Temporal Resources

We define the equational theory using two mutually inductively defined equality judgements

Γ ⊢V ≡W : X Γ ⊢ M ≡ N : X ! τ

where we presuppose that we only compare well-typed values and computations. For most part the
contexts and types play no significant role in equations, so we omit them wherever convenient.

These judgements are defined using rules corresponding to different kinds of equations. We postpone
the full list of rules to Appendix A and in the paper discuss the temporally more important ones.

First, we include rules making these judgements into congruences. To these we add standard β - and
η-equations for the non-modal λ[τ]-values and -computations, as in FGCBV [16, 17] e.g., for fun we add

(fun (x :X) 7→ M)V ≡ M[V/x] (β -equation)

V ≡ fun (x :X) 7→V x (η-equation, where Γ ⊢V : X → Y ! τ)
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Algebraicity

let x = (box[τ]X V as y in M) in N ≡ box[τ]X V as y in (let x = M in N)

let x = (unbox[τ]X V as y in M) in N ≡ unbox[τ]X V as y in (let x = M in N)

handle (box[τ]X V as y in M) with H to z in N ≡ box[τ]X V as y in (handle M with H to z in N)

handle (unbox[τ]X V as y in M) with H to z in N ≡ unbox[τ]X V as y in (handle M with H to z in N)

(with y ̸∈ f v(N) in all four equations)
Commutativity

box[τ]X V as x in (box[τ ′]Y W as y in N)≡ box[τ ′]Y W as y in (box[τ]X V as x in N)

unbox[τ]X V as x in (unbox[τ ′]X ′ W as y in N)≡ unbox[τ ′]X ′ W as y in (unbox[τ]X V as x in N)

box[τ]X V as x in (unbox[τ ′]X ′ W as y in N)≡ unbox[τ ′]X ′ W as y in (box[τ]X V as x in N)

(with x ̸∈ f v(W ),y ̸∈ f v(V ) in all three equations)

Interaction

box[τ]X V as x in K[unbox[τ]X x as y in N]≡ box[τ]X V as x in K[N[V/y]] (τK ≥ τ)

Discarding and Contraction

box[τ]X V as x in N ≡ N (x ̸∈ f v(N))

unbox[τ]X V as x in N ≡ N (x ̸∈ f v(N))

unbox[τ]X V as x in (unbox[τ]X V as y in N)≡ unbox[τ]X V as x in N[x/y]

Figure 5: box and unbox fragment of the equational theory of λ[τ].

We also add standard equations for computation terms that we inherit from FGCBV, e.g., for let we add

let x = (return V ) in N ≡ N[V/x] (β -equation for let)

let x = (opV (y . M)) in N ≡ opV (y . (let x = M in N)) (algebraicity equation for let)

To those we add equations for effect handling, which are analogous to SEM-HANDLE-RET and SEM-
HANDLE-OP from Fig. 4. We also include equations describing how delay interacts with 0 and +, and
that it can be pulled out from sequential composition and effect handling, analogously to SEM-LET-OP.

Finally, we add equations pertinent to the behaviour of box and unbox. They are listed in Fig. 5. As
foreshadowed earlier, they are very closely related to standard equational presentations of local state [19,
21, 26], by intuitively understanding box as memory allocation and unbox as a lookup operation, and by
understanding the modal type [τ]X as the type of memory locations or reference cells storing X-typed
values. Differently from the standard presentation of local state, we do not have an assignment operation.

The algebraicity equations allow us to pull box and unbox out of sequential composition, and they
express that user-defined effect handlers do not handle these two constructs. The commutativity equations
allow us to exchange the order of boxes and unboxes as long as no variables escape their scope.

The interaction equation is the main port of departure of our equational theory from the usual equa-
tional presentations of local state. While in the theory of local state the allocation and lookup operations
interact when sequenced immediately after one another, for λ[τ] it is crucial that we abstract over inter-
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mediate computations with the computation term contexts K, so as to ensure that enough time (at least
τ) is spent between a box and a corresponding unbox, as enforced by the side-condition τK ≥ τ .

The two discarding equations remove box and unbox when they no longer influence the computation.
The contraction equation expresses that multiple unboxings of the same resource yield the same value.

We can then prove general congruence and algebraicity results for computation term contexts.
Proposition 4.3. If Γ ⊢ K : τ and Γ,ΓK ⊢ M ≡ N : X ! τ ′, then we have Γ ⊢ K[M]≡ K[N] : X ! τ + τ ′.
Proposition 4.4. If Γ ⊢ K : τ and Γ,ΓK ⊢ M : X ! τ ′ and Γ,⟨τ + τ ′⟩,x :X ⊢ N : Y ! τ ′′, then we have the
algebraicity equation Γ ⊢ let x = K[M] in N ≡ K[let x = M in N] : Y ! τ + τ ′+ τ ′′.

The equational theory defined in this paper differs from the one in the original paper [1] by box
and unbox being treated here in an effectful, stateful way. In [1], box was considered a value, and the
corresponding β - and η-equations described unbox simply as a pattern-matching eliminator for box.

4.3 Equational Soundness for Temporal Resources

We now prove that our operational semantics is sound with respect to the equational theory we defined.

4.3.1 From States to Computation Term Contexts

We begin by translating states S to computation term contexts KS, so as to surround the computations
appearing in our operational semantics with boxes corresponding to resources appearing in S, thus al-
lowing us to use the interaction equation on the unboxes in the computations. The computation term
context KS also includes delays for all time-graded modalities ⟨τ⟩ in S. We define KS as follows:

KS
def
=


[ ], if S = /0
KS′ [delay τ [ ]], if S = S′,⟨τ⟩
KS′ [box[τ]X V as x in [ ]], if S = S′,x 7→[τ]X V

These computation term contexts KS are related to the states S in natural and expected ways.
Proposition 4.5.

1. For all S and S′, we have KS,S′ = KS[KS′ ] and ΓKS = ΓS.

2. If Γ ⊢ S, then we have Γ ⊢ KS : τS.

3. If S = S′,x 7→[τ]X V,S′′, then we have KS = KS′ [box[τ]X V as x in KS′′ ].

4.3.2 Evaluation Contexts

The second ingredient we need for stating and proving the equational soundness theorem is evaluation
contexts E. We use them below to have a stronger induction hypothesis. They are defined as follows:

E ::= [ ]
∣∣ let x = E in N

∣∣ handle E with H to z in N

We also identify well-formed evaluation contexts Γ ⊢[X!τ] E : Y !τ ′, given by rules analogous to the typing
rules for the corresponding computations, so we omit them. Here, the subscript [X ! τ] in the judgement
Γ ⊢[X!τ] E : Y ! τ ′ denotes the type of computations that we can fill the hole [ ] in E with, giving us:
Proposition 4.6. If Γ ⊢[X!τ] E : Y ! τ ′ and Γ ⊢ M : X ! τ , then Γ ⊢ E[M] : Y ! τ ′.
Proposition 4.7. If Γ ⊢[X!τ] E : Y ! τ ′ and Γ ⊢ M ≡ N : X ! τ , then Γ ⊢ E[M]≡ E[N] : Y ! τ ′.

As each E is a sequence of lets and handles, we can prove algebraicity equations for them.
Proposition 4.8. If Γ ⊢[Y !τ ′] E : Z ! τ ′′ and Γ− τ ⊢ V : [τ]X and Γ,x :X ⊢ N : Y ! τ ′, then we have the
equation Γ ⊢ E[unbox[τ]X V as x in N]≡ unbox[τ]X V as x in E[N] : Z !τ ′′, and similarly for box and delay.
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4.3.3 Equational Soundness

Soundness then takes the following form, using evaluation contexts for a stronger induction hypothesis.

Theorem 4.9. If ⊢ S and ΓS ⊢ M : X ! τ , and if ⟨S | M⟩⇝ ⟨S′ | M′⟩, for some S′ and M′, with S′ = S,S′′,
then for every evaluation context ΓS ⊢[X!τ] E : Y !τ ′, we have ⊢ KS[E[M]]≡ KS[E[KS′′ [M′]]] : Y ! (τS+τ ′).

Proof. We proceed by induction on the derivation of ⟨S | M⟩⇝ ⟨S′ | M′⟩. In all cases, we use Thm. 3.10
to prove that τS+τ = τS′ +τ ′′ and ΓS′ ⊢ M′ : X !τ ′′, for some τ ′′. In addition, we use Prop. 3.8 to recover
and use the well-typedness information for the subcomputations of M and M′.

Cases for reduction rules that do not change state and for which there are corresponding equations
(SEM-APP, SEM-MATCH, SEM-LET-RET, SEM-LET-OP, SEM-HANDLE-RET, SEM-HANDLE-OP) are
proved as follows: In these cases, S′ = S and S′′ = /0, and thus KS′′ = K /0 = [ ]. By choosing the equation
corresponding to the given reduction rule, we get ΓS ⊢ M ≡ N : X ! τ . Next, given any ΓS ⊢[X!τ] E : Y ! τ ′,
we apply Prop. 4.7 to get the equation ΓS ⊢ E[M]≡ E[N] : Y ! τ ′. Finally, applying Prop. 4.3, we get the
required equation ⊢ KS[E[M]]≡ KS[E[N]]≡ KS[E[KS′′ [N]]] : Y ! (τS + τ ′).

SEM-LET-CONG: Here, M = let x = N in P and M′ = let x = N′ in P. Applying Prop. 3.8 to ΓS ⊢
M : X ! τ , we get τ = τ1 + τ2, and that N and P are typed as ΓS ⊢ N : X ′ ! τ1 and ΓS,⟨τ1⟩,x :X ′ ⊢ P : X ! τ2,
for some X ′. Using the induction hypothesis on ΓS ⊢ N : X ′ ! τ1 and ⟨S | N⟩⇝ ⟨S′ | N′⟩, we get for every
ΓS ⊢[X ′!τ1] E′ : Z ! τ ′′ the equation ⊢ KS[E′[N]] ≡ KS[E′[KS′′ [N′]]] : Z ! (τS + τ ′′). To prove the required
equation, for every evaluation context ΓS ⊢[X!τ] E : Y ! τ ′, we apply the above result with the evaluation

context E′ def
=E[let x= [ ] inP], giving us the equation ⊢KS[E[let x=N inP]]≡KS[E[let x=KS′′ [N′] inP]] :

Y ! (τS + τ ′). Finally, we apply the algebraicity of computation term contexts from Prop. 4.4, getting
⊢ KS[E[M]]≡ KS[E[let x = N in P]]≡ KS[E[KS′′ [let x = N′ in P]]]≡ KS[E[KS′′ [M′]]] : Y ! (τS + τ ′).

We make two useful observations about this case. First, the computation in the right-hand side of the
equation is well-typed because Prop. 3.1 and Thm. 3.10 ensure that τS + τ1 = τS′ + τ ′

1 = τS + τS′′ + τ ′
1,

meaning that τ1 = τS′′ + τ ′
1, with ΓS,ΓS′′ ⊢ N′ : X ′ ! τ ′

1, and therefore ΓS ⊢ KS′′ [N′] : X ′ ! τ1. Second, the
use of evaluation contexts is crucial to be able to lift the equation relating N and N′ that we get from the
induction hypothesis to an equation relating the computations let x = N in P and let x = N′ in P.

SEM-HANDLE-CONG: Analogous to SEM-LET-CONG, but with E′ def
=E[handle [ ] with H to z in P].

SEM-DELAY: Here, M = delay τ1 M′ and S′ = S,⟨τ1⟩, and thus S′′ = /0,⟨τ1⟩. Applying Prop. 3.8 to
ΓS ⊢ M : X ! τ , we get τ = τ1 +τ2 and ΓS,⟨τ1⟩ ⊢ M′ : X ! τ2. We observe that KS′′ = K( /0,⟨τ1⟩) = delay τ1 [ ].
Thus, we get the required equation as ⊢ KS[E[M]]≡ KS[E[delay τ1 M′]]≡ KS[E[KS′′ [M′]]] : Y ! (τS + τ ′).

SEM-BOX: Here, M = box[τ ′′]X ′ V as x inM′ and S′ =S,x 7→[τ ′′]X ′ V , thus S′′ = /0,x 7→[τ ′′]X ′ V . Apply-
ing Prop. 3.8, we get ΓS,x : [τ ′′]X ′ ⊢M′ : [X ]τ . We observe that KS′′ =K( /0,x 7→[τ ′′ ]X ′V )= box[τ ′′]X ′ V as x in [ ].
Thus, we get the equation ⊢ KS[E[M]]≡ KS[E[box[τ ′′]X ′ V as x in M′]]≡ KS[E[KS′′ [M′]]] : Y ! (τS + τ ′).

SEM-UNBOX: Here, M = unbox[τ ′′]X ′ y as x in N and M′ = N[S[y]/x] and S′ = S, and thus S′′ = /0.
Applying Prop. 3.8 to ΓS ⊢M : X !τ , we get that y : [τ ′′]X ′ ∈ ΓS−τ ′′ and ΓS,x :X ′ ⊢N : [X ]τ . By reasoning
analogously to the proof of Thm. 3.10, we get for ΓS = (ΓS)y,1,y : [τ ′′]X ′,(ΓS)y,2 that τ ′′ ≤ τ(ΓS)y,2 and
ΓS ⊢ S[y] : X ′. We further observe that S = Sy,1,y 7→[τ ′′]X ′ S[y],Sy,2 and (ΓS)y,i = ΓSy,i . Putting these
observations together, we can prove the required equation as the following sequence of equations:

⊢ KS[E[unbox[τ ′′]X ′ y as x in N]]

≡ KS[unbox[τ ′′]X ′ y as x in E[N]] (Props. 4.3 and 4.8)

≡ KSy,1 [box[τ ′′]X ′ S[y] as y in KSy,2 [unbox[τ ′′]X ′ y as x in E[N]]] (Prop. 4.5)

≡ KSy,1 [box[τ ′′]X ′ S[y] as y in KSy,2 [E[N[S[y]/x]]]] (interaction eq. and τ
′′ ≤ τ(ΓS)y,2 = τKSy,2

)
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≡ KS[E[N[S[y]/x]]] (Props. 4.3 and 4.8)

≡ KS[E[KS′′ [M′]]] : Y ! (τS + τ
′) (M′ = N[S[y]/x] and KS′′ = K /0 = [ ])

When choosing E
def
=[ ], and using Prop. 4.5 for KS[KS′′ ] = KS′ , we get the desired soundness result.

Corollary 4.10. If ⊢ S and ΓS ⊢ M : X !τ and ⟨S | M⟩⇝ ⟨S′ | M′⟩, then ⊢ KS[M]≡ KS′ [M′] : X ! (τS+τ).

5 Related Work

Our use of a stateful operational semantics for describing the computational behaviour of λ[τ] is remi-
niscent of Krishnaswami’s semantics for a modally typed functional reactive programming (FRP) lan-
guage [13]. In Krishnaswami’s work, states contain pointers to values available either now or later, after
some number of clock ticks. These stored (pointers to) values are analogous to the resources x 7→[τ]X V
that we store in our states. However, whereas we model time passage by extending the context with
context modalities, Krishnaswami has a separate (clock) tick relation that moves states forward in time.
The consequence of this is that values available now are not necessarily available in future states in
Krishnaswami’s semantics, while our semantics allows us to unbox values that were boxed long ago.

As noted earlier, the equational theory of Sect. 4.2 is closely related to and inspired by the standard
equational presentations of local state [19, 21, 26]. It differs from those presentations by not including an
assignment operation and by having the box-unbox interaction equation apply at a distance, and generally
not when box and unbox are sequenced one after another. Another difference with these theories of local
state is that the type X in our modal type [τ]X can be an arbitrary value type, whereas theories of local
state typically restrict reference types to base types, meaning that in λ[τ] we are in fact dealing with
higher-order (local) state [3, 15]. If we were to restrict X to ground types, we would have an instance of
full ground state [9], as resource types could nest modal types but not combine them with functions.

6 Conclusion

In this paper we have proposed a stateful time-aware operational semantics for λ[τ], a core calculus for
programming with temporal resources. The semantics uses states to track which temporal resources
are used by the program and to also provide a cost model by tracking the run time of computations.
This gives us an alternative, dynamic means for analysing the use of temporal resources, complementing
λ[τ]’s time-graded, modal type-and-effect system. We proved this semantics to be type-safe, and we also
proved it sound with respect to a temporal variant of standard equational presentations of local state.

Our soundness result is admittedly a bit of a stopgap measure—while it shows that our semantics
agrees with a well-understood notion of computation, eventually it would be desirable to prove a more
standard soundness result against a denotational semantics modelling the equational theory we consider.
For an even stronger guarantee, it would be desirable to also prove our semantics adequate with respect
to such a denotational semantics. For adequacy, the states appearing in our operational semantics likely
need to be quotiented a little, e.g., so as to not distinguish between the order of resources stored between
two occurrences of the context modality, and to not distinguish between S,⟨τ⟩,⟨τ ′⟩ and S,⟨τ + τ ′⟩.
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A Equational Theory

Values and computations both have an equality judgement, Γ ⊢ V ≡ W : X and Γ ⊢ M ≡ N : X ! τ , re-
spectively. We presuppose that we only compare well-typed values and computations. For most part the
contexts and types play no significant role in equations, so we omit them wherever convenient.

The rules defining these judgements are given in Figs. 6 to 9. We have split these rules between
different fragments of λ[τ]. We omit standard equations which specify how substitution is performed,
and equations stating that these equality relations are congruences with respect to all the term formers.

Unit Type

V ≡ () (where Γ ⊢V : unit)

Product Type

match (V,W ) with {(x,y) 7→ N} ≡ N[V/x,W/y]

M[V/Z]≡matchV with {(x,y) 7→ M[(x,y)/z]} (where Γ ⊢V : X ×Y )

Function Type

(fun (x :X) 7→ M)V ≡ M[V/x]

V ≡ fun (x :X) 7→V x (where Γ ⊢V : X → Y ! τ)

Figure 6: Non-modal fragment of the equational theory of λ[τ].

Return Values

let x = (return V ) in N ≡ N[V/x] handle (return V ) with H to z in N ≡ N[V/z]

Algebraicity

let x = (opV (y . M)) in N ≡ opV (y . (let x = M in N)) (y ̸∈ f v(N))

Effect Handling

handle (opV (y . M)) with H to z in N ≡ (H = (x . k . Mop)op∈O)

box
(
fun (y : Bop) 7→ handle M with H to z in N

)
as w in Mop[V/x,w/k] (y ̸∈ f v(H),y ̸∈ f v(N))

Associativity

let x = (let y = M in N) in P ≡ let y = M in (let x = N in P) (y ̸∈ f v(P))

Figure 7: return, let, and handle fragment of the equational theory of λ[τ].
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Algebraicity

let x = (delay τ M) in N ≡ delay τ (let x = M in N)

handle (delay τ M) with H to z in N ≡ delay τ (handle M with H to z in N)

Time Grades

delay 0 M ≡ M

delay τ (delay τ
′ M)≡ delay (τ + τ

′) M

Figure 8: delay fragment of the equational theory of λ[τ].

Algebraicity

let x = (box[τ]X V as y in M) in N ≡ box[τ]X V as y in (let x = M in N)

let x = (unbox[τ]X V as y in M) in N ≡ unbox[τ]X V as y in (let x = M in N)

handle (box[τ]X V as y in M) with H to z in N ≡ box[τ]X V as y in (handle M with H to z in N)

handle (unbox[τ]X V as y in M) with H to z in N ≡ unbox[τ]X V as y in (handle M with H to z in N)

(with y ̸∈ f v(N) in all four equations)

Commutativity

box[τ]X V as x in (box[τ ′]Y W as y in N)≡ box[τ ′]Y W as y in (box[τ]X V as x in N)

unbox[τ]X V as x in (unbox[τ ′]X ′ W as y in N)≡ unbox[τ ′]X ′ W as y in (unbox[τ]X V as x in N)

box[τ]X V as x in (unbox[τ ′]X ′ W as y in N)≡ unbox[τ ′]X ′ W as y in (box[τ]X V as x in N)

(with x ̸∈ f v(W ),y ̸∈ f v(V ) in all three equations)

Interaction

box[τ]X V as x in K[unbox[τ]X x as y in N]≡ box[τ]X V as x in K[N[V/y]] (τK ≥ τ)

Discarding and Contraction

box[τ]X V as x in N ≡ N (x ̸∈ f v(N))

unbox[τ]X V as x in N ≡ N (x ̸∈ f v(N))

unbox[τ]X V as x in (unbox[τ]X V as y in N)≡ unbox[τ]X V as x in N[x/y]

Figure 9: box and unbox fragment of the equational theory of λ[τ].
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