Folds, Scans, and Moore Machines as Monoidal Profunctor Homomorphisms

Alexandre Garcia de Oliveira

MSFP 2024 - Tallinn, Estonia

July 8, 2024

Outline

- 2 Folds and Scans
- 3 Monoidal Profunctors
 - 4 The connection

• • • • • • • •

• This paper is a theoretical application of monoidal profunctors, since every key idea depends on it.

くロ と く 同 と く ヨ と 一

э

- This paper is a theoretical application of monoidal profunctors, since every key idea depends on it.
- Functional programming always relies on mathematical laws to describe, for example, that an evaluation of an expression is well-behaved.

- This paper is a theoretical application of monoidal profunctors, since every key idea depends on it.
- Functional programming always relies on mathematical laws to describe, for example, that an evaluation of an expression is well-behaved.
- For example, a map over a list needs to preserve composition, and if we map the identity function, nothing happens.

- This paper is a theoretical application of monoidal profunctors, since every key idea depends on it.
- Functional programming always relies on mathematical laws to describe, for example, that an evaluation of an expression is well-behaved.
- For example, a map over a list needs to preserve composition, and if we map the identity function, nothing happens.
- With monads, when chaining multiple functions with bind, the way we group the functions does not affect the result. Also, if we have a monadic value and bind it to the return function, the result is the same as the original monadic value.

Map for Lists Law in Haskell

• Identity:

• map id $xs \equiv xs$

• Preserves Composition:

• $map(f \circ g) xs \equiv map f(map g xs)$

Monad Laws in Haskell

- Left identity: return $a \ge k \equiv k$ a
- **Right identity:** $m \succ return \equiv m$
- Associativity: $(m \succ k) \succ h \equiv m \succ (\lambda x \rightarrow k \ x \succ h)$

3

Functor laws

• The law for lists generalizes to every Functor instance.

イロト イヨト イヨト

э

Functor laws

- The law for lists generalizes to every Functor instance.
- Identity:
 - fmap id $xs \equiv xs$
- Preserves Composition:
 - $fmap(f \circ g) xs \equiv fmap f(fmap g xs)$

э

くロト くぼト くほト くちょう

Monoidal Category laws

A monoidal category is a sextuple (C, \otimes , I, α , ρ , λ) where

- \mathcal{C} is a category;
- $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is a bifunctor;
- I is an object of C called unit;
- $\rho_A : A \otimes I \to A, \ \lambda_A : I \otimes A \to A \text{ and } \alpha_{ABC} : (A \otimes B) \otimes C \to A \otimes (B \otimes C)$ are three natural isomorphisms such that the diagrams below commute.

Monoidal Category laws

A monoid in a monoidal category C is a tuple (M, e, m) where M is an object of C, $e: I \to M$ is the unit morphism and $m: M \otimes M \to M$ is the multiplication morphism, satisfying

- Right unit: $m \circ (id \otimes e) = \rho_M$
- Left unit: $m \circ (e \otimes id) = \lambda_M$
- Associativity: $m \circ (m \otimes id) = m \circ (id \otimes m) \circ \alpha_M$

くロト くぼト くほト くちょう

Law for folds

- (Fusion law) fold op $e \circ map \ f = fold(\lambda s \ a \to op \ s \ (f \ a)) \ e$
- (Parallel-bifold law) bifoldl f g (e, u) (zip as bs) = (foldl f e as, foldl g u bs)

・ロト ・ 一下 ・ ト ・ ト ・ ト

Definition of bifoldl

$$\begin{array}{l} \textit{bifoldl} :: (c \rightarrow a \rightarrow c) \rightarrow (d \rightarrow b \rightarrow d) \rightarrow (c, d) \rightarrow [(a, b)] \rightarrow (c, d) \\ \textit{bifoldl } f \ g \ (c, d) \ [] = (c, d) \\ \textit{bifoldl } f \ g \ (c, d) \ ((a, b) : xs) = \textit{bifoldl } f \ g \ (f \ c \ a, g \ d \ b) \ xs \end{array}$$

イロト イヨト イヨト

æ

Abstracting the Pattern

• The first law represents the naturality condition of a natural transformation between two profunctors.

くロ と く 同 と く ヨ と 一

э

Abstracting the Pattern

- The first law represents the naturality condition of a natural transformation between two profunctors.
- The second law derives from a homomorphism that preserves the structure between two monoidal profunctors.

Monoidal Profunctor in Haskell

class Profunctor
$$p \Rightarrow MonoPro p$$
 where
 $mpempty :: p()()$
 $(*) :: p a b \rightarrow p c d \rightarrow p(a, c)(b, d)$

イロト イヨト イヨト

3

Monoidal Profunctor in Haskell

class Profunctor
$$p \Rightarrow MonoPro \ p$$
 where
 $mpempty :: p()()$
 $(*) :: p \ a \ b \rightarrow p \ c \ d \rightarrow p(a,c)(b,d)$

- Left identity: *dimap diagr snd* (*mpempty* * *f*) = *f*
- Right identity: dimap diagl fst (f * mpempty) = f
- Associativity: dimap $\alpha^{-1} \alpha (f \star (g \star h)) = (f \star g) \star h$

First example

instance $MonoPro(\rightarrow)$ where $mpempty = \lambda() \rightarrow ()$ $f \star g = \lambda(a, b) \rightarrow (f a, g b)$

イロト 不得 トイヨト イヨト 二日

Second example

data Moore $a b = Moore b (a \rightarrow Moore a b)$

イロト イボト イヨト イヨト

3

data Moore $a b = Moore b (a \rightarrow Moore a b)$

instance Profunctor Moore where dimap f g (Moore c bm) = Moore (g c) (dimap f g \circ bm \circ f) instance MonoPro Moore where mpempty = Moore () (_ \rightarrow mpempty) (Moore b am) \star (Moore d cm) = Moore (b, d) (λ (a, c) \rightarrow am a \star cm c)

・ロット (雪) (き) (き) (き)

Third example

data SISO f g a b = SISO { $unSISO :: f a \rightarrow g b$ }

イロト イポト イヨト イヨト 三日

data SISO $f g a b = SISO \{ unSISO :: f a \rightarrow g b \}$

instance (Functor f, Functor g) \Rightarrow Profunctor (SISO f g) where dimap ab cd (SISO bc) = SISO (fmap cd \circ bc \circ fmap ab) instance (Functor f, Applicative g) \Rightarrow MonoPro (SISO f g) where mpempty = SISO ($\lambda_{-} \rightarrow$ pure ()) SISO f \star SISO g = SISO (zip' \circ (f \star g) \circ unzip')

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Moore machines from coalgebras

data *MooreCoalg* $s a b = MooreCoalg (s \rightarrow b) (s \rightarrow a \rightarrow s)$

イロト 不得 トイヨト イヨト 三日

Moore machines from coalgebras

data *MooreCoalg* $s a b = MooreCoalg (s \rightarrow b) (s \rightarrow a \rightarrow s)$

 $\begin{array}{l} \mbox{buildMoore} :: \mbox{MooreCoalg } s \ a \ b \rightarrow s \rightarrow \mbox{Moore} \ a \ b \\ \mbox{buildMoore} \ (\mbox{MooreCoalg out next}) \ s = \\ \mbox{Moore} \ (\mbox{out } s) \ (\mbox{buildMoore} \ (\mbox{MooreCoalg out next}) \circ \ next \ s) \\ \end{array}$

• foldl ::
$$(s \rightarrow a \rightarrow s) \rightarrow s \rightarrow [a] \rightarrow s$$

イロト イボト イヨト イヨト

Ξ.

- foldl :: $(s \rightarrow a \rightarrow s) \rightarrow s \rightarrow [a] \rightarrow s$
- Expand: ofoldl :: $(s \rightarrow a \rightarrow s) \rightarrow s \rightarrow (s \rightarrow b) \rightarrow [a] \rightarrow b$

- foldl :: $(s \rightarrow a \rightarrow s) \rightarrow s \rightarrow [a] \rightarrow s$
- Expand: ofoldl :: $(s \rightarrow a \rightarrow s) \rightarrow s \rightarrow (s \rightarrow b) \rightarrow [a] \rightarrow b$
- Use Moore: *mfoldl* :: *Moore* $a \ b \rightarrow [a] \rightarrow b$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

- foldl :: $(s \rightarrow a \rightarrow s) \rightarrow s \rightarrow [a] \rightarrow s$
- Expand: ofoldl :: $(s \rightarrow a \rightarrow s) \rightarrow s \rightarrow (s \rightarrow b) \rightarrow [a] \rightarrow b$
- Use Moore: *mfoldl* :: *Moore* $a \ b \rightarrow [a] \rightarrow b$
- Pack into SISO (f a → g b): mfoldl :: Moore a b → SISO [] Identity a b

(日) (同) (三) (三) (三)

A natural transformation emerges

mfoldl is a natural transformation: for every h :: a → b, i :: c → d the following diagram commutes.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Monoidal profunctor homomorphism

mfoldl is a monoidal homomorphism between the profunctors *Moore* and *SISO* [] *Identity*.

Monoidal profunctor homomorphism

- *mfoldl* is a monoidal homomorphism between the profunctors *Moore* and *SISO* [] *Identity*.
- mfoldl preserves unit mpempty: mfoldl mpempty = mpempty

(日) (同) (三) (三) (二)

Monoidal profunctor homomorphism

- *mfoldl* is a monoidal homomorphism between the profunctors *Moore* and *SISO* [] *Identity*.
- mfoldl preserves unit mpempty: mfoldl mpempty = mpempty
- *mfoldl* preserves the monoidal profunctor multiplication *: *mfoldl* (*m* * *n*) = *mfoldl m* * *mfoldl n*. The lhs is the parallel composition of Moore machines, the rhs is the same composition in a *SISO*.

 Naturality, gives us the fold fusion law: fold op e ∘ map g = fold (λs a → op s (g a)) e. This is a special case of the naturality condition: dimap g id ∘ mfold = mfold ∘ dimap g id.

- Naturality, gives us the fold fusion law: foldl op e ∘ map g = foldl (λs a → op s (g a)) e. This is a special case of the naturality condition: dimap g id ∘ mfoldl = mfoldl ∘ dimap g id.
- The preservation of identity tells us that folding over a list of () is just ().

- Naturality, gives us the fold fusion law: foldl op e ∘ map g = foldl (λs a → op s (g a)) e. This is a special case of the naturality condition: dimap g id ∘ mfoldl = mfoldl ∘ dimap g id.
- The preservation of identity tells us that folding over a list of () is just ().
- The preservation of monoidal multiplication tells us that foldl (curry (Imap (λ((a, b), (c, d)) → ((a, c), (b, d))) (uncurry f * uncurry g))) (e, u) (zip as bs) ≡ (foldl f e as, foldl g u bs).

- Naturality, gives us the fold fusion law: fold op e ∘ map g = fold (λs a → op s (g a)) e. This is a special case of the naturality condition: dimap g id ∘ mfold = mfold ∘ dimap g id.
- The preservation of identity tells us that folding over a list of () is just ().
- The preservation of monoidal multiplication tells us that foldl (curry (Imap (λ((a, b), (c, d)) → ((a, c), (b, d))) (uncurry f * uncurry g))) (e, u) (zip as bs) ≡ (foldl f e as, foldl g u bs).
- Or using bifoldl: bifoldl f g (e, u) (zip as bs) = (foldl f e as, foldl g u bs)

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

The same is valid for scans

type Scan a b = SISO [] ZipNonEmpty <math>a bmscanl :: Moore $a b \rightarrow Scan a b$ mscanl $m = SISO (\lambda as \rightarrow ZipNonEmpty (runMoore m as))$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

data NonEmpty a = a ▷ [a]
data ZipNonEmpty a = ZipNonEmpty { unzipne :: NonEmpty a }
deriving Show

instance Functor ZipNonEmpty where
fmap f (ZipNonEmpty (a ▷ as)) =
ZipNonEmpty ((f a) ▷ fmap f as)

instance Applicative ZipNonEmpty where
pure a = ZipNonEmpty (a ▷ repeat a)
(ZipNonEmpty (f ▷ fs)) ⊗ (ZipNonEmpty (x ▷ xs))
= ZipNonEmpty ((f x) ▷ zipWith (\$) fs xs)

(日) (同) (三) (三) (三)

• Investigating *Moore* type and *SISO* as instances of monoidal profunctors has provided valuable insights..

э

くロ と く 同 と く ヨ と 一

- Investigating *Moore* type and *SISO* as instances of monoidal profunctors has provided valuable insights..
- Establishing a significant mathematical connection: a natural transformation links Moore machines with folds and scans, and this transformation preserves the monoidal profunctor operations.

- Investigating *Moore* type and *SISO* as instances of monoidal profunctors has provided valuable insights..
- Establishing a significant mathematical connection: a natural transformation links Moore machines with folds and scans, and this transformation preserves the monoidal profunctor operations.
- Laws in the monoidal profunctor domain directly translate to laws governing folds and scans.

- Investigating *Moore* type and *SISO* as instances of monoidal profunctors has provided valuable insights..
- Establishing a significant mathematical connection: a natural transformation links Moore machines with folds and scans, and this transformation preserves the monoidal profunctor operations.
- Laws in the monoidal profunctor domain directly translate to laws governing folds and scans.
- Applying this pattern of reasoning can help identify lawful computations using monoidal profunctors.

くロト くぼト くほト くちょう

• Provide comprehensive proofs for all claims made.

э

24 / 24

イロト イポト イヨト イヨト

- Provide comprehensive proofs for all claims made.
- Include detailed examples to illustrate the rules in their final form.

Image: A matrix and a matrix

- Provide comprehensive proofs for all claims made.
- Include detailed examples to illustrate the rules in their final form.
- Definitions of the structures presented.

- Provide comprehensive proofs for all claims made.
- Include detailed examples to illustrate the rules in their final form.
- Definitions of the structures presented.
- Explore whether other monoidal profunctors yield similar results. Unfolds? Traversals?