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Motivation

let (body, door, windshield) = disassemble (car) in

let (body', door') = paint (body, door) in

delay τdry

assemble (body', door', windshield)

let (body, door, windshield) = disassemble (car) in

let (body', door') = paint (body, door) in

let windshield' = clean (windshield) in (∗ τdry ≤ τclean ∗)
assemble (body', door', windshield')
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Core Calculus



Core calculus

Based on:

D. Ahman. When programs have to watch paint dry, FoSSaCS
(2023) 1-23.

Value V,W ::= x variable∣∣ f(V1, . . . ,Vn) constant∣∣ ()
∣∣ (V,W) unit and pair∣∣ fun (x : X) 7→ M function

Effect handler H ::= (x . k . Mop)op∈O operation clauses



Core calculus

Computation

M,N ::= return V returning a value∣∣ let x = M in N sequential composition∣∣ V W function application∣∣ match V with {(x, y) 7→ N} product elimination∣∣ op V (x . M) algebraic operation call∣∣ handle M with H to z in N effect handling∣∣ delay τ M time delay operation∣∣ box[τ]X V as x in N boxing up∣∣ unbox[τ]X V as x in N unboxing



Core calculus - Types

Time grade: τ ∈ N

Ground type A, B, C ::= b
∣∣ unit

∣∣ A × B
∣∣ [τ]A

Value type X, Y, Z ::= A
∣∣ X × Y

∣∣ X → Y ! τ
∣∣ [τ]X

Computation type: X ! τ

(Variable) context Γ ::= ∅
∣∣ Γ, x :X

∣∣ Γ, ⟨τ⟩



Core calculus - Typing rules

Important rules

LET

Γ ⊢ M : X ! τ Γ, ⟨τ⟩, x :X ⊢ N : Y ! τ ′

Γ ⊢ let x = M in N : Y ! τ+ τ ′

OP

Γ ⊢ V : Aop Γ, ⟨τop⟩, x :Bop ⊢ M : X ! τ

Γ ⊢ op V (x . M) : X ! τop + τ
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Core calculus - Typing rules

DELAY

Γ, ⟨τ⟩ ⊢ M : X ! τ ′

Γ ⊢ delay τ M : X ! τ+ τ ′

BOX

Γ, ⟨τ⟩ ⊢ V : X Γ, x : [τ]X ⊢ N : Y ! τ ′

Γ ⊢ box[τ]X V as x in N : Y ! τ ′

UNBOX

τ ≤ τΓ Γ − τ ⊢ V : [τ]X Γ, x :X ⊢ N : Y ! τ ′

Γ ⊢ unbox[τ]X V as x in N : Y ! τ ′
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Core calculus - Contexts

Time substraction

Γ − 0 def
= Γ

∅− τ+
def
= ∅

(Γ, x :X) − τ+
def
= Γ − τ+

(Γ, ⟨τ ′⟩) − τ+
def
=

{
Γ, ⟨τ ′ − τ+⟩, if τ+ ≤ τ ′

Γ − (τ+ − τ ′), otherwise

Context time

τ∅
def
= 0 τ(Γ,x:X)

def
= τΓ τ(Γ,⟨τ⟩)

def
= τΓ + τ



Core calculus - Typing rules

HANDLE

Γ ⊢ M : X ! τ

Γ, ⟨τ⟩, z :X ⊢ N : Y ! τ ′ H = (x . k . Mop)op∈O(
∀τ ′′ . Γ, x :Aop, k : [τop] (Bop → Y ! τ ′′) ⊢ Mop : Y ! τop + τ ′′)

op∈O

Γ ⊢ handle M with H to z in N : Y ! τ+ τ ′



Example

H := handler {

| (prepare, body, door, k) → (

let (body',door') = clean (body, door) in

let (body'',door'') = paint (body',door') in

k (body'',door'')

)

| (disassemble, car, k) → let y = disassemble (car) in k y

| ...

} (∗ Important thing is that τclean + τpaint = τprepare ∗)
handle (

let (body, door, windshield) = disassemble (car) in

let (body', door') = prepare (body, door) in

let windshield' = clean (windshield) in

assemble (body', door', windshield)

) with H to car in return car



Renamings and Admissible Rules

Proposotion
Standard structural rules are admissible

Γ, Γ ′ ⊢ J x :X ̸∈ Γ, Γ ′

Γ, x :X, Γ ′ ⊢ J

Γ, x :X, y :Y, Γ ′ ⊢ J

Γ, y :Y, x :X, Γ ′ ⊢ J

Γ, x :X, x ′ :X, Γ ′ ⊢ J

Γ, x :X, Γ ′ ⊢ J[x/x ′]



Renamings and Admissible Rules

Proposotion
Additionally, admissible for the time-graded context modalities

Γ, ⟨0⟩, Γ ′ ⊢ J

Γ, Γ ′ ⊢ J

Γ, ⟨τ1 + τ2⟩, Γ ′ ⊢ J

Γ, ⟨τ1⟩, ⟨τ2⟩, Γ ′ ⊢ J

Γ, ⟨τ⟩, Γ ′ ⊢ J τ ≤ τ ′

Γ, ⟨τ ′⟩, Γ ′ ⊢ J

Γ, ⟨τ⟩, x :X, Γ ′ ⊢ J

Γ, x :X, ⟨τ⟩, Γ ′ ⊢ J



Renamings and Admissible Rules

Ren Γ Γ ′ def
=



τΓ ≤ τΓ ′

and

ρ : vars(Γ) → vars(Γ ′)
∣∣ ∀(x :X ∈ Γ). ρ(x) :X ∈ Γ ′

and

τΓx,2 ≤ τΓ ′
ρ(x),2



Note: Γ = Γx,1, x :X, Γx,2



Stateful Time-Aware Operational Semantics

⟨S | M⟩⇝ ⟨S ′ | M ′⟩



Stateful Time-Aware Operational Semantics - States

States:

S ::= ∅
∣∣ S, ⟨τ⟩

∣∣ S, x 7→[τ]X V

Operations on states:

▶ S − τ

▶ τS

▶ ΓS
def
=


∅, if S = ∅
ΓS ′ , ⟨τ⟩, if S = S ′, ⟨τ⟩
ΓS ′ , x : [τ]X, if S = S ′, x 7→[τ]X V
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Stateful Time-Aware Operational Semantics - States

Proposotion
If x : X ∈ ΓS, then

▶ X = [τ]Y for some τ and Y, and

▶ x 7→[τ]Y V ∈ S, for some V.

Proposotion

▶ For all S and τ, we have ΓS−τ = ΓS − τ.

▶ For all S and S ′, we have ΓS,S ′ = ΓS, ΓS ′ .

▶ For all S, we have τΓS = τS.

▶ For all S and S ′, we have τS,S ′ = τS + τS ′ .



Stateful Time-Aware Operational Semantics -
Reduction rules

Small-step reduction relation ⟨S | M⟩⇝ ⟨S ′ | M ′⟩.

SEM-LET-CONG

⟨S | M⟩⇝
〈
S ′ | M ′〉

⟨S | let x = M in N⟩⇝
〈
S ′ | let x = M ′ in N

〉
SEM-LET-RET

⟨S | let x = (return V) in N⟩⇝ ⟨S | N[V/x]⟩

SEM-LET-OP

⟨S | let x = (op V (y . M)) in N⟩⇝ ⟨S | op V (y . let x = M in N)⟩
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Stateful Time-Aware Operational Semantics -
Reduction rules

SEM-DELAY

⟨S | delay τ M⟩⇝ ⟨S, ⟨τ⟩ | M⟩

SEM-BOX

〈
S | box[τ]X V as x in N

〉
⇝

〈
S, x 7→[τ]X V | N

〉



Stateful Time-Aware Operational Semantics -
Reduction rules

SEM-UNBOX

y ∈ S〈
S | unbox[τ]X y as x in N

〉
⇝ ⟨S | N[S[y]/x]⟩

S[x] def
=


V, if S = S ′, x 7→[τ]X V

S ′[x], if S = S ′, ⟨τ⟩ or S = S ′, y 7→[τ]X V and x ̸= y

undefined, if S = ∅



Stateful Time-Aware Operational Semantics -
Reduction rules

SEM-HANDLE-OP

H = (x . k . Mop)op∈O

⟨S | handle (op V (y . M)) with H to z in N⟩⇝

⟨S | box
(
fun (y : Bop) 7→ handle M with H to z in N

)
as w in Mop[V/x,w/k]⟩

Γ ⊢ M : X ! τ

Γ, ⟨τ⟩, z :X ⊢ N : Y ! τ ′ H = (x . k . Mop)op∈O(
∀τ ′′ . Γ, x :Aop, k : [τop] (Bop → Y ! τ ′′) ⊢ Mop : Y ! τop + τ ′′)

op∈O

Γ ⊢ handle M with H to z in N : Y ! τ+ τ ′



Type Safety



Stateful Time-Aware Operational Semantics - Progress

Theorem (Progress theorem)
If ⊢ S and ΓS ⊢ M : X ! τ, then either

▶ M is in a result form, or

▶ we can make step ⟨S | M⟩⇝ ⟨S ′ | M ′⟩, for some S ′ and M ′.

Result form is either an operation call or a returned value.



Stateful Time-Aware Operational Semantics -
Preservation

Theorem (Preservation theorem)
If ⊢ S and ΓS ⊢ M : X ! τ, and if ⟨S | M⟩⇝ ⟨S ′ | M ′⟩, for some S ′ and
M ′, then

▶ ⊢ S ′,

▶ there exists a τ ′, such that τS + τ = τS ′ + τ ′, and

▶ ΓS ′ ⊢ M ′ : X ! τ ′.



Equational Soundness

⟨S | M⟩⇝ ⟨S ′ | M ′⟩⇓
⊢ KS[M] ≡ KS ′ [M ′] : X ! (τS + τ)



Equational Soundness - Equational theory

Equations for well-typed terms:

Γ ⊢ V ≡ W : X Γ ⊢ M ≡ N : X ! τ.

We have:

▶ congruence rules

▶ standard β-equations and η-equations for the non-modal
λ[τ]-values and λ[τ]-computations as in FGCBV
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Equational Soundness - Equational theory

▶ standard equations for computation terms (let, handle)

handle (return V) with H to z in N ≡ N[V/z]

handle (op V (y . M)) with H to z in N ≡

box
(
fun (y : Bop) 7→ handle M with H to z in N

)
as w in Mop[V/x,w/k],

where H = (x . k . Mop)op∈O and y ̸∈ fv(H), y ̸∈ fv(N)
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Equational Soundness - Equational theory

▶ equations describing interactions of delay

let x = (delay τ M) in N ≡
delay τ (let x = M in N)

handle (delay τ M) with H to z in N ≡
delay τ (handle M with H to z in N)

delay 0 M ≡ M

delay τ (delay τ ′ M) ≡ delay (τ+ τ ′) M

▶ equations describing behaviour of box and unbox
(displayed later)



Equational Soundness - Computational context

Computational context K ::= [ ]∣∣ op V (x . K)∣∣ delay τ K∣∣ box[τ]X V as x in K∣∣ unbox[τ]X V as x in K

Comp. context time: τK

Bounded variables: ΓK



Equational soundness - Computational context

Composition operation: K[K ′]

Hole filling operation: K[M]

Proposotion

▶ If Γ ⊢ K : τ and Γ, ΓK ⊢ K ′ : τ ′, then Γ ⊢ K[K ′] : τ+ τ ′.

▶ If Γ ⊢ K : τ and Γ, ΓK ⊢ M : X ! τ ′, then Γ ⊢ K[M] : X ! τ+ τ ′.

Judgements are polymorphic in type of return values!



Equational soundness - Equational theory

Equations of box and unbox:

let x = (box[τ]X V as y in M) in N ≡
box[τ]X V as y in (let x = M in N)

let x = (unbox[τ]X V as y in M) in N ≡
unbox[τ]X V as y in (let x = M in N)

handle (box[τ]X V as y in M) with H to z in N ≡
box[τ]X V as y in (handle M with H to z in N)

handle (unbox[τ]X V as y in M) with H to z in N ≡
unbox[τ]X V as y in (handle M with H to z in N)

(with y ̸∈ fv(N) in all four equations)



Equational soundness - Equational theory

Equations of box and unbox:

box[τ]X V as x in (box[τ ′]Y W as y in N) ≡
box[τ ′]Y W as y in (box[τ]X V as x in N)

unbox[τ]X V as x in (unbox[τ ′]X ′ W as y in N) ≡
unbox[τ ′]X ′ W as y in (unbox[τ]X V as x in N)

box[τ]X V as x in (unbox[τ ′]X ′ W as y in N) ≡
unbox[τ ′]X ′ W as y in (box[τ]X V as x in N)

(with x ̸∈ fv(W), y ̸∈ fv(V) in all three equations)



Equational soundness - Equational theory

Equations of box and unbox:

box[τ]X V as x in K[unbox[τ]X x as y in N] ≡
box[τ]X V as x in K[N[V/y]] (τK ≥ τ)

box[τ]X V as x in N ≡ N (x ̸∈ fv(N))

unbox[τ]X V as x in N ≡ N (x ̸∈ fv(N))

unbox[τ]X V as x in (unbox[τ]X V as y in N) ≡
unbox[τ]X V as x in N[x/y]



Equational soundness - Computational context

Proposotion
If Γ ⊢ K : τ and Γ, ΓK ⊢ M ≡ N : X ! τ ′, then we have

Γ ⊢ K[M] ≡ K[N] : X ! τ+ τ ′.

Proposotion
If Γ ⊢ K : τ and Γ, ΓK ⊢ M : X ! τ ′ and Γ, ⟨τ+ τ ′⟩, x :X ⊢ N : Y ! τ ′′,
then we have the algebraicity equation

Γ ⊢ let x = K[M] in N ≡ K[let x = M in N] : Y ! τ+ τ ′ + τ ′′.



Equational soundness - Computational context

Translation from state to computational context:

KS
def
=


[ ], if S = ∅
KS ′ [delay τ [ ]], if S = S ′, ⟨τ⟩
KS ′ [box[τ]X V as x in [ ]], if S = S ′, x 7→[τ]X V

Proposotion

▶ For all S and S ′, we have KS,S ′ = KS[KS ′ ] and ΓKS = ΓS.

▶ ⇒ If S = S ′, x 7→[τ]X V,S ′′, then we have
KS = KS ′ [box[τ]X V as x in KS ′′ ].
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Equational soundness - Soundness theorem

Theorem
If ⊢ S and ΓS ⊢ M : X ! τ and ⟨S | M⟩⇝ ⟨S ′ | M ′⟩, then

⊢ KS[M] ≡ KS ′ [M ′] : X ! (τS + τ).

Almost works ...
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Equational soundness - Soundness theorem

Case SEM-LET-CONG

We have:

▶ M⇝M ′

▶ ⇒ ⊢ KS[M] ≡ KS ′ [M ′] (induction hypothesis)

▶ ⇒ ⊢ KS[M] ≡ KS[KS ′′ [M ′]]

We want:

▶ ⊢ KS[let x = M in N] ≡ KS ′ [let x = M ′ in N]

▶ ⇐⇒ ⊢ KS[let x = M in N] ≡ KS[let x = KS ′′ [M ′] in N]

▶ ⇐ ΓKS ⊢ let x = M in N ≡ let x = KS ′′ [M ′] in N

We are stuck with ΓKS ⊢ M ≡ KS ′′ [M ′]
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Equational soundness - Evaluation context

Evaluation context E ::= [ ]∣∣ let x = E in N∣∣handle E with H to z in N



Equational soundness - Evaluation context

E ::= [ ]
∣∣ let x = E in N

∣∣ handle E with H to z in N

Proposotion
If Γ ⊢[X!τ] E : Y ! τ ′ and Γ ⊢ M ≡ N : X ! τ, then

Γ ⊢ E[M] ≡ E[N] : Y ! τ ′.

Proposotion
If Γ ⊢[Y!τ ′] E : Z ! τ ′′ and Γ − τ ⊢ V : [τ]X and Γ, x :X ⊢ N : Y ! τ ′,
then we have the equation

Γ ⊢ E[unbox[τ]X V as x in N] ≡ unbox[τ]X V as x in E[N] : Z ! τ ′′,

and similarly for box and delay.
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Equational soundness - Soundness theorem

Theorem
If
▶ ⊢ S, and
▶ ΓS ⊢ M : X ! τ, and
▶ ⟨S | M⟩⇝ ⟨S ′ | M ′⟩, for some S ′ and M ′, with S ′ = S,S ′′,

then for every evaluation context ΓS ⊢[X!τ] E : Y ! τ ′, we have

⊢ KS[E[M]] ≡ KS[E[KS ′′ [M ′]]] : Y ! (τS + τ ′).



Proof of soundness theorem.
SEM-LET-CONG

▶ M = let x = N in P and M ′ = let x = N ′ in P
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Proof of soundness theorem - continuation.

SEM-DELAY
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Proof of soundness theorem - continuation.
SEM-UNBOX

▶ M = unbox[τ ′′]X ′ y as x in N and M ′ = N[S[y]/x] and
S ′ = S

▶ ⇒ y : [τ ′′]X ′ ∈ ΓS − τ ′′ and ΓS, x :X ′ ⊢ N : [τ]X (inversion)

▶ ⇒ ΓS ⊢ S[y] : X ′

▶ ΓS = (ΓS)y,1, y : [τ ′′]X ′, (ΓS)y,2

▶ ⇒ S = Sy,1, y 7→[τ ′′]X ′ S[y],Sy,2

▶ KS ′′ = [ ]



Proof of soundness theorem - continuation.
SEM-UNBOX

▶ M = unbox[τ ′′]X ′ y as x in N and M ′ = N[S[y]/x] and
S ′ = S

▶ ⇒ y : [τ ′′]X ′ ∈ ΓS − τ ′′ and ΓS, x :X ′ ⊢ N : [τ]X (inversion)

▶ ⇒ ΓS ⊢ S[y] : X ′

▶ ΓS = (ΓS)y,1, y : [τ ′′]X ′, (ΓS)y,2

▶ ⇒ S = Sy,1, y 7→[τ ′′]X ′ S[y],Sy,2

▶ KS ′′ = [ ]



Proof of soundness theorem - continuation.
SEM-UNBOX

▶ M = unbox[τ ′′]X ′ y as x in N and M ′ = N[S[y]/x] and
S ′ = S

▶ ⇒ y : [τ ′′]X ′ ∈ ΓS − τ ′′ and ΓS, x :X ′ ⊢ N : [τ]X (inversion)

▶ ⇒ ΓS ⊢ S[y] : X ′

▶ ΓS = (ΓS)y,1, y : [τ ′′]X ′, (ΓS)y,2

▶ ⇒ S = Sy,1, y 7→[τ ′′]X ′ S[y],Sy,2

▶ KS ′′ = [ ]



Proof of soundness theorem - continuation.
SEM-UNBOX

▶ M = unbox[τ ′′]X ′ y as x in N and M ′ = N[S[y]/x] and
S ′ = S

▶ ⇒ y : [τ ′′]X ′ ∈ ΓS − τ ′′ and ΓS, x :X ′ ⊢ N : [τ]X (inversion)

▶ ⇒ ΓS ⊢ S[y] : X ′

▶ ΓS = (ΓS)y,1, y : [τ ′′]X ′, (ΓS)y,2

▶ ⇒ S = Sy,1, y 7→[τ ′′]X ′ S[y],Sy,2

▶ KS ′′ = [ ]



Proof of soundness theorem - continuation.
SEM-UNBOX

▶ M = unbox[τ ′′]X ′ y as x in N and M ′ = N[S[y]/x] and
S ′ = S

▶ ⇒ y : [τ ′′]X ′ ∈ ΓS − τ ′′ and ΓS, x :X ′ ⊢ N : [τ]X (inversion)

▶ ⇒ ΓS ⊢ S[y] : X ′

▶ ΓS = (ΓS)y,1, y : [τ ′′]X ′, (ΓS)y,2

▶ ⇒ S = Sy,1, y 7→[τ ′′]X ′ S[y],Sy,2

▶ KS ′′ = [ ]



Proof of soundness theorem - continuation.
SEM-UNBOX

▶ M = unbox[τ ′′]X ′ y as x in N and M ′ = N[S[y]/x] and
S ′ = S

▶ ⇒ y : [τ ′′]X ′ ∈ ΓS − τ ′′ and ΓS, x :X ′ ⊢ N : [τ]X (inversion)

▶ ⇒ ΓS ⊢ S[y] : X ′

▶ ΓS = (ΓS)y,1, y : [τ ′′]X ′, (ΓS)y,2

▶ ⇒ S = Sy,1, y 7→[τ ′′]X ′ S[y],Sy,2

▶ KS ′′ = [ ]



Proof of soundness theorem - continuation.
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Equational soundness - Soundness theorem

Take E = [ ] and we get soundness theorem as a colloraly.

Theorem
If ⊢ S and ΓS ⊢ M : X ! τ and ⟨S | M⟩⇝ ⟨S ′ | M ′⟩, then

⊢ KS[M] ≡ KS ′ [M ′] : X ! (τS + τ).



Future work

▶ Normalization

▶ Adequacy

▶ Concurrency

▶ Finite loops



Appendix

Typing rules for λ[τ]

VAR

x :X ∈ Γ

Γ ⊢ x : X

CONST

(Γ ⊢ Vi : bi)1≤i≤n

Γ ⊢ f(V1, . . . ,Vn) : b

PAIR

Γ ⊢ V : X Γ ⊢ W : Y

Γ ⊢ (V,W) : X × Y

UNIT

Γ ⊢ () : unit

FUN

Γ, x :X ⊢ M : Y ! τ

Γ ⊢ fun (x : X) 7→ M : X → Y ! τ

RETURN

Γ ⊢ V : X

Γ ⊢ return V : X ! 0

LET

Γ ⊢ M : X ! τ Γ, ⟨τ⟩, x :X ⊢ N : Y ! τ ′

Γ ⊢ let x = M in N : Y ! τ+ τ ′



Typing rules for λ[τ]

APPLY

Γ ⊢ V : X → Y ! τ Γ ⊢ W : X

Γ ⊢ V W : Y ! τ

MATCH

Γ ⊢ V : X × Y Γ, x :X, y :Y ⊢ N : Z ! τ

Γ ⊢ match V with {(x, y) 7→ N} : Z ! τ

OP

Γ ⊢ V : Aop Γ, ⟨τop⟩, x :Bop ⊢ M : X ! τ

Γ ⊢ op V (x . M) : X ! τop + τ



Typing rules for λ[τ]

DELAY

Γ, ⟨τ⟩ ⊢ M : X ! τ ′

Γ ⊢ delay τ M : X ! τ+ τ ′

HANDLE

Γ ⊢ M : X ! τ

Γ, ⟨τ⟩, z :X ⊢ N : Y ! τ ′ H = (x . k . Mop)op∈O(
∀τ ′′ . Γ, x :Aop, k : [τop] (Bop → Y ! τ ′′) ⊢ Mop : Y ! τop + τ ′′)

op∈O

Γ ⊢ handle M with H to z in N : Y ! τ+ τ ′



Typing rules for λ[τ]

BOX

Γ, ⟨τ⟩ ⊢ V : X Γ, x : [τ]X ⊢ N : Y ! τ ′

Γ ⊢ box[τ]X V as x in N : Y ! τ ′

UNBOX

τ ≤ τΓ Γ − τ ⊢ V : [τ]X Γ, x :X ⊢ N : Y ! τ ′

Γ ⊢ unbox[τ]X V as x in N : Y ! τ ′

Well-formed states Γ ⊢ S:

Γ ⊢ ∅

Γ ⊢ S

Γ ⊢ S, ⟨τ⟩

Γ ⊢ S Γ, ΓS, ⟨τ⟩ ⊢ V : X x ̸∈ Γ, ΓS

Γ ⊢ S, x 7→[τ]X V



Small-step reduction relation
SEM-APP

⟨S | (fun (x :X) 7→ M)V⟩⇝ ⟨S | M[V/x]⟩

SEM-MATCH

⟨S | match (V,W) with {(x, y) 7→ N}⟩⇝ ⟨S | N[V/x,W/y]⟩

SEM-LET-CONG

⟨S | M⟩⇝
〈
S ′ | M ′〉

⟨S | let x = M in N⟩⇝
〈
S ′ | let x = M ′ in N

〉
SEM-LET-RET

⟨S | let x = (return V) in N⟩⇝ ⟨S | N[V/x]⟩



Small-step reduction relation

SEM-LET-OP

⟨S | let x = (op V (y . M)) in N⟩⇝ ⟨S | op V (y . let x = M in N)⟩

SEM-HANDLE-CONG

⟨S | M⟩⇝
〈
S ′ | M ′〉

⟨S | handle M with H to z in N⟩⇝〈
S ′ | handle M ′ with H to z in N

〉
SEM-HANDLE-RET

⟨S | handle (return V) with H to z in N⟩⇝

⟨S | N[V/z]⟩



Small-step reduction relation

SEM-DELAY

⟨S | delay τ M⟩⇝

⟨S, ⟨τ⟩ | M⟩

SEM-BOX

〈
S | box[τ]X V as x in N

〉
⇝〈

S, x 7→[τ]X V | N
〉

SEM-UNBOX

y ∈ S〈
S | unbox[τ]X y as x in N

〉
⇝

⟨S | N[S[y]/x]⟩

Proposotion
If ⊢ S and x : [τ]X ∈ ΓS, then (ΓS)x,1, ⟨τ⟩ ⊢ S[x] : X.



Computational context typing rules

Γ ⊢ [ ] : 0

Γ ⊢ V : Aop Γ, ⟨τop⟩, x :Bop ⊢ K : τ

Γ ⊢ op V (x . K) : τop + τ

Γ, ⟨τ⟩ ⊢ K : τ ′

Γ ⊢ delay τ K : τ+ τ ′

Γ, ⟨τ⟩ ⊢ V : X Γ, x : [τ]X ⊢ K : τ ′

Γ ⊢ box[τ]X V as x in K : τ ′

τ ≤ τΓ Γ − τ ⊢ V : [τ]X Γ, x :X ⊢ K : τ ′

Γ ⊢ unbox[τ]X V as x in K : τ ′



Equational theory - Non-modal fragment

Unit Type

V ≡ () (where Γ ⊢ V : unit)

Product Type

match (V,W) with {(x, y) 7→ N} ≡ N[V/x,W/y]

M[V/z] ≡ match V with {(x, y) 7→ M[(x, y)/z]} (where Γ ⊢ V : X × Y)

Function Type

(fun (x :X) 7→ M)V ≡ M[V/x]

V ≡ fun (x :X) 7→ V x (where Γ ⊢ V : X → Y ! τ)



Equational theory - return, let, and handle fragment

Return Values

let x = (return V) in N ≡ N[V/x]

handle (return V) with H to z in N ≡ N[V/z]

Algebraicity (y ̸∈ fv(N))

let x = (op V (y . M)) in N ≡ op V (y . (let x = M in N))

Effect Handling

. . .

Associativity (y ̸∈ fv(P))

let x = (let y = M in N) in P ≡ let y = M in (let x = N in P)


