Procontainers
for

idioms, arrows and monads

July 2024 @ MSFP E. Rivas (TTU)

Procontainers
for

idioms, arrows and monads

Procontainers
for

idioms, arrows and monads

containers

Containers

They are a class of functors
F-:C —-C

Containers

They are a class of functors
F: Set — Set

Containers

They are a class of functors
F: Set — Set

They can be characterised as functors of the form

PR for data S : Set,P: S — Set.

scS

Containers

They are a class of functors
F: Set — Set

They can be characterised as functors of the form

> P(s)=X fordata$:Set,P:S — Set.

scS

Containers

They are a class of functors
F: Set — Set

They can be characterised as functors of the form

> P(s)=X fordata$:Set,P:S — Set.

scS

We write S > P for a container, and [SwP] = S~ XP(®) for its realization.
ses

Containers

They are a class of functors
F: Set — Set

They can be characterised as functors of the form

> P(s)=X fordata$:Set,P:S — Set.

scS

We write S > P for a container, and [SwP] = S~ XP(®) for its realization.
ses

Equivalently, data can be captured as a bundle p : E — B.

Containers

kg, lists

LX = Z XFin(n)

neN

where Fin(n) = {0,...,n -1}

Containers

kg, lists

LX = E XFin(n)

neN

where Fin(n) = {0,...,n -1}

They are closed under many functor operations
» Products
» Coproducts
» Composition
» Day convolution w.r.t. products

Containers

A morphism f > f# : S P — T Q is given by:
» f: ST
> 7 vs.Q(f(s)) — P(s)

Containers

A morphism f > f# : S P — T Q is given by:
» f: ST
> 7 vs.Q(f(s)) — P(s)

A morphism between containers is realized as a natural transformation:

[to] : [SoP]X— [T>Q] X

Containers

A morphism f > f# : S P — T Q is given by:
» f: ST
> 7 vs.Q(f(s)) — P(s)

A morphism between containers is realized as a natural transformation:

[to] : [SoP]X— [T>Q] X

Containers form a category Cont.

Containers

A morphism f > f# : S P — T Q is given by:
» f: ST
> 7 vs.Q(f(s)) — P(s)

A morphism between containers is realized as a natural transformation:

[to] : [SoP]X— [T>Q] X

Containers form a category Cont.
It has multiple monoidal structures:

(Cont, x,K;) (Cont,+,Ky) (Cont,o,Id) (Cont,x,Id)

Procontainers
for

idioms, arrows and monads

idioms, arrows and monads

Computational effects

let £ (x : int) = if x % 2 =0 then x / 2 else 3 * x + 1

Computational effects

let £ (x : int) = if x % 2 =0 then x / 2 else 3 * x + 1

w[[f]]:Z—)Z

Computational effects

let £ (x : int) = if x % 2 =0 then x / 2 else 3 * x + 1
w[[f]]:Z—)Z

“A value is, a computation does” — P. B. Levy

Computational effects

let £ (x : int) = if x % 2 =0 then x / 2 else 3 * x + 1
~ [[f]] L — 7
“A value is, a computation does” — P. B. Levy

An effect is something that a computation can do when interacting with its environment:
» Print a message in the screen.
» Read some bytes from a network socket.
» Use a memory cell to store a value.

Idioms, arrows and monads

We think of effects as given by primitive operations. E.g., read : 1 ~ B, write : B ~~ 1

But how do we compose such primitive operations to obtain a program?
» Monads
» |dioms, or applicative functors
» Arrows

Idioms, arrows and monads

We think of effects as given by primitive operations. E.g., read : 1 ~ B, write : B ~~ 1

But how do we compose such primitive operations to obtain a program?
» Monads
m :: * -> %

return :: a -> m a
bind :: ma -> (a->mb) ->mb

» Idioms, or applicative functors
» Arrows

Idioms, arrows and monads

We think of effects as given by primitive operations. E.g., read : 1 ~ B, write : B ~~ 1

But how do we compose such primitive operations to obtain a program?
» Monads
» |dioms, or applicative functors

f i ox > %
pure :: a -> f a
app :: fa->f (a->b) ->fb

> Arrows

Idioms, arrows and monads

We think of effects as given by primitive operations. E.g., read : 1 ~ B, write : B ~~ 1

But how do we compose such primitive operations to obtain a program?

» Monads

» |dioms, or applicative functors

» Arrows

p :: X => k% -> xk

first :: pab ->p (a, c) (b, ¢)
arr :: (a ->b) ->pabd

(>>>) ::pab->pbc->pac

Procontainers
for

idioms, arrows and monads

Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
» formonadsm : * ->
» Foridioms £ : * -> =

Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
» formonadsm : * ->
» Foridioms £ : * -> =

Monad: monoid in (Cont, o, Id)

Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
» formonadsm : * ->
» Foridioms £ : * -> =

Monad: monoid in (Cont, o, Id), idiom: monoid in (Cont, x, Id).

Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
» formonadsm : * ->
» Foridioms £ : * -> =

Monad: monoid in (Cont, o, Id), idiom: monoid in (Cont, x, Id).

What about arrows? In the definition, p is not an endofunctor... it is a profunctor:

p::*—>*—>*

Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
» formonadsm : * ->
» Foridioms £ : * -> =

Monad: monoid in (Cont, o, Id), idiom: monoid in (Cont, x, Id).

What about arrows? In the definition, p is not an endofunctor... it is a profunctor:
p :: X => k% -> xk

Can we find procontainers such that arrows are monoids w.r.t. a monoidal structure?

Procontainers
for

idioms, arrows and monads

Procontainers

Procontainers are a class of profunctors

P: Set”™ x Set — Set

Procontainers

Procontainers are a class of profunctors

P: Set”™ x Set — Set
They are of the form

> (X:> (> P(s,p") :>Y)>
ses pteP+(s)

S:Set,P™:8— Set,P~: > PT(s) — Set

seS

for data

Procontainers

Procontainers are a class of profunctors

P: Set”™ x Set — Set
They are of the form

> (X:> (> P(s,p") :>Y)>
ses pteP+(s)

S:Set,P™:8— Set,P~: > PT(s) — Set

seS

for data

Equivalently,
F—EFE—B

Procontainers

A value of [S P] X is a shape together with a function, giving an X value for each position.

Procontainers

A value of [S P] X is a shape together with a function, giving an X value for each position.
E.g. for List = N Fin,

[true, false, true] : [N Fin] B = (3: N, {eg — true, e; — false, o, — true} : Fin 3 — B)

Procontainers

A value of [S P] X is a shape together with a function, giving an X value for each position.
E.g. for List = N Fin,

[true, false, true] : [N Fin] B = (3: N, {eg — true, e; — false, o, — true} : Fin 3 — B)
A procontainer could be pictured as sort of a set of containers.
A value of [SeP* > P~] (X,Y) is a choice of a container (s € §) together with a function

X—= [PT(s)>P(s)] Y

Procontainers

Given a signature {op, : A, ~ B, } encoded as a polynomial:

oey’

(Z Ag> > \o,_).By
ox

where each operation op : A ~ B is represented as a functor F(X) = A x (B = X).

Procontainers

Given a signature {op, : A, ~ B, } encoded as a polynomial:

oceY’

(Z Ag> > \o,_).By
ox

where each operation op : A ~ B is represented as a functor F(X) = A x (B = X).
As a procontainer, we can encode it separating X from A,
Y > Ao.A, > Ao,).B,

where op : A ~ B is represented as the profunctor F(X,Y) =X = (A x (B =Y)).

Procontainers
As in the case of containers, procontainers form a category.

Procontainers
As in the case of containers, procontainers form a category.

Natural transformations between realized profunctors of P = S P+ P~ andQ =T-Qt > Q—

oxy: [SePTeP7] (X,Y) — [T>Q" Q7] (X,Y)

Procontainers
As in the case of containers, procontainers form a category.

Natural transformations between realized profunctors of P = S P+ P~ andQ =T-Qt > Q—

axy : Z(X: > P (sph) éY)—)Z(Xi > 0 (tgh) :>Y>

seS p+ePt(s tel qteQ+(t)

Procontainers
As in the case of containers, procontainers form a category.

Natural transformations between realized profunctors of P = S P+ P~ andQ =T-Qt > Q—

axy : Z(X: > P (sph) éY)—)Z(Xi > 0 (tgh) :>Y>

seS p+ePt(s tel qteQ+(t)

A procontainer morphism is given by
» f: ST
> f+:vs.Pr(s) — QT (f(s))
> = vs.vpt.Q-(f(s), fr(pt)) — P (s,p™)

Procontainers

They are closed under useful constructors:
» Products
» Coproducts
» Bénabou’s composition

Procontainers

They are closed under useful constructors:
» Products
» Coproducts
» Bénabou’s composition

Recall: Bénabou’s composition is the horizontal composition of two profunctors:

leDd
(P©Q:C~E)(XY) = / PO 1) x Q(1,)

Procontainers

They are closed under useful constructors:
» Products
» Coproducts
» Bénabou’s composition

Recall: Bénabou’s composition is the horizontal composition of two profunctors:
leDd
(P©Q:C~E)(XY) = / PO 1) x Q(1,)

Picking an object, endoprofunctors with Bénabou’s composition form with it a monoidal structure,
with Hom as unit.

Procontainers

For procontainers,P = S>P+ P, 0 =TQ">Q:
PoQ=SxT)>(Asb). > (P-(s.5%) = 0 (1)
stePts

PAGS YD Y O (tfsT))

s—eP—(s,st)

Procontainers

For procontainers,P = S>P+ P, 0 =TQ">Q:
PoQ=SxT)>(Asb). > (P-(s.5%) = 0 (1)
stePts

PAGS YD Y O (tfsT))

s—eP—(s,st)

A monoid w.r.t. this structure has:
m : PsP — P e : Hom

Procontainers

For procontainers,P = S>P+ P, 0 =TQ">Q:

PoQ =S xT)> (A, 1). Z (P~(s,s7) = Q7 (1))

steP+s

PAGS YD Y O (tfsT))

s—eP—(s,st)

A monoid w.r.t. this structure has:
m : PsP — P e : Hom
myy = f leD PX, 1) xP(LY) — P(X)Y) exy : Hom(X)Y)

Procontainers

For procontainers,P = S>P+ P, 0 =TQ">Q:

PoQ =S xT)> (A, 1). Z (P~(s,s7) = Q7 (1))

steP+s
SAG YT Y (i)
s—eP—(s,st)
A monoid w.r.t. this structure has:
m : PxP — P e : Hom — P
Myy f'ED PX, 1) xP(LY) — P(X)Y) exy : Hom(XY) — P(XY)

>>) : (pxi,pivy) -> pxy arr :: (X ->y) -> pxy

Procontainers

What about first?

Procontainers

What about first?

first :: pxy ->p (x, 2) (y, 2)

Procontainers

What about first?

first :: pxy ->p (x, 2) (y, 2)

We are interested in strong profunctors and strong natural transformations:

steyz - POX,Y) — PXx LY x I)

Procontainers

What about first?

first :: pxy ->p (x, 2) (y, 2)

We are interested in strong profunctors and strong natural transformations:

steyz - POX,Y) — PXx LY x I)

Procontainers come with a canonical strength. Moreover, this strength is unique.

styyz: [SePToP](XY) — [SePToP | (XxLYx1I)

Procontainers
What about first?

first :: pxy ->p (x, 2) (y, 2)

We are interested in strong profunctors and strong natural transformations:

steyz - POX,Y) — PXx LY x I)

Procontainers come with a canonical strength. Moreover, this strength is unique.
styyz: [SePToP](XY) — [SePToP | (XxLYx1I)

And all morphisms between procontainers are strong as well.

Adjunctions between containers and procontainers

There are a number of connections between containers and procontainers:

*

Cont=— 1 Procont < L ——Cont

*
* —

Adjunctions between containers and procontainers

There are a number of connections between containers and procontainers:

*

Cont=— 1 Procont < L ——Cont

*
* —

Moreover, these adjunctions respect monoidal structures which encode how computational effects
on different interfaces relate.

(Cont,o) = T (Procont, ®) L (Cont, x)

Adjunctions between containers and procontainers

There are a number of connections between containers and procontainers:

Cont=— 1 Procont < L ——Cont

* —

Moreover, these adjunctions respect monoidal structures which encode how computational effects
on different interfaces relate.

(Cont,o) = T (Procont, ®) L (Cont, x)

Also, we can characterise when a procontainer is an arrow (similar to T. Uustalu combinatorics of
containers).

Questions? Thanks!

	First Section

