
Procontainers
for

idioms, arrows and monads

E. Rivas (TTU)July 2024 @ MSFP



Procontainers
for

idioms, arrows and monads



Procontainers
for

idioms, arrows and monads



Procontainers
for

idioms, arrows and monads



Containers

They are a class of functors
F : C → C

They can be characterised as functors of the form∑
s∈S

XP(s) for data S : Set, P : S → Set.

We write S ▷ P for a container, and
q

S ▷ P
y
=
∑
s∈S

XP(s) for its realization.

Equivalently, data can be captured as a bundle p : E → B.



Containers

They are a class of functors
F : Set → Set

They can be characterised as functors of the form∑
s∈S

XP(s) for data S : Set, P : S → Set.

We write S ▷ P for a container, and
q

S ▷ P
y
=
∑
s∈S

XP(s) for its realization.

Equivalently, data can be captured as a bundle p : E → B.



Containers

They are a class of functors
F : Set → Set

They can be characterised as functors of the form∑
s∈S

XP(s) for data S : Set, P : S → Set.

We write S ▷ P for a container, and
q

S ▷ P
y
=
∑
s∈S

XP(s) for its realization.

Equivalently, data can be captured as a bundle p : E → B.



Containers

They are a class of functors
F : Set → Set

They can be characterised as functors of the form∑
s∈S

P(s) ⇒ X for data S : Set, P : S → Set.

We write S ▷ P for a container, and
q

S ▷ P
y
=
∑
s∈S

XP(s) for its realization.

Equivalently, data can be captured as a bundle p : E → B.



Containers

They are a class of functors
F : Set → Set

They can be characterised as functors of the form∑
s∈S

P(s) ⇒ X for data S : Set, P : S → Set.

We write S ▷ P for a container, and
q

S ▷ P
y
=
∑
s∈S

XP(s) for its realization.

Equivalently, data can be captured as a bundle p : E → B.



Containers

They are a class of functors
F : Set → Set

They can be characterised as functors of the form∑
s∈S

P(s) ⇒ X for data S : Set, P : S → Set.

We write S ▷ P for a container, and
q

S ▷ P
y
=
∑
s∈S

XP(s) for its realization.

Equivalently, data can be captured as a bundle p : E → B.



Containers

E.g., lists
L X =

∑
n∈N

XFin(n)

where Fin(n) =
{

0, . . . , n − 1
}

They are closed under many functor operations
▶ Products
▶ Coproducts
▶ Composition
▶ Day convolution w.r.t. products



Containers

E.g., lists
L X =

∑
n∈N

XFin(n)

where Fin(n) =
{

0, . . . , n − 1
}

They are closed under many functor operations
▶ Products
▶ Coproducts
▶ Composition
▶ Day convolution w.r.t. products



Containers
A morphism f ▷ f# : S ▷ P → T ▷ Q is given by:
▶ f : S → T
▶ f# : ∀s.Q(f(s)) → P(s)

A morphism between containers is realized as a natural transformation:
r

f ▷ f#
z

X
:
q

S ▷ P
y

X →
q

T ▷ Q
y

X

Containers form a category Cont.
It has multiple monoidal structures:(

Cont,×, K1
) (

Cont,+, K0
) (

Cont, ◦, Id
) (

Cont, ⋆, Id
)



Containers
A morphism f ▷ f# : S ▷ P → T ▷ Q is given by:
▶ f : S → T
▶ f# : ∀s.Q(f(s)) → P(s)

A morphism between containers is realized as a natural transformation:
r

f ▷ f#
z

X
:
q

S ▷ P
y

X →
q

T ▷ Q
y

X

Containers form a category Cont.
It has multiple monoidal structures:(

Cont,×, K1
) (

Cont,+, K0
) (

Cont, ◦, Id
) (

Cont, ⋆, Id
)



Containers
A morphism f ▷ f# : S ▷ P → T ▷ Q is given by:
▶ f : S → T
▶ f# : ∀s.Q(f(s)) → P(s)

A morphism between containers is realized as a natural transformation:
r

f ▷ f#
z

X
:
q

S ▷ P
y

X →
q

T ▷ Q
y

X

Containers form a category Cont.

It has multiple monoidal structures:(
Cont,×, K1

) (
Cont,+, K0

) (
Cont, ◦, Id

) (
Cont, ⋆, Id

)



Containers
A morphism f ▷ f# : S ▷ P → T ▷ Q is given by:
▶ f : S → T
▶ f# : ∀s.Q(f(s)) → P(s)

A morphism between containers is realized as a natural transformation:
r

f ▷ f#
z

X
:
q

S ▷ P
y

X →
q

T ▷ Q
y

X

Containers form a category Cont.
It has multiple monoidal structures:(

Cont,×, K1
) (

Cont,+, K0
) (

Cont, ◦, Id
) (

Cont, ⋆, Id
)



Procontainers
for

idioms, arrows and monads



Procontainers
for

idioms, arrows and monads



Computational effects

let f (x : int) = if x % 2 = 0 then x / 2 else 3 * x + 1

⇝ JfK : Z → Z

“A value is, a computation does” – P. B. Levy

An effect is something that a computation can do when interacting with its environment:
▶ Print a message in the screen.
▶ Read some bytes from a network socket.
▶ Use a memory cell to store a value.



Computational effects

let f (x : int) = if x % 2 = 0 then x / 2 else 3 * x + 1

⇝ JfK : Z → Z

“A value is, a computation does” – P. B. Levy

An effect is something that a computation can do when interacting with its environment:
▶ Print a message in the screen.
▶ Read some bytes from a network socket.
▶ Use a memory cell to store a value.



Computational effects

let f (x : int) = if x % 2 = 0 then x / 2 else 3 * x + 1

⇝ JfK : Z → Z

“A value is, a computation does” – P. B. Levy

An effect is something that a computation can do when interacting with its environment:
▶ Print a message in the screen.
▶ Read some bytes from a network socket.
▶ Use a memory cell to store a value.



Computational effects

let f (x : int) = if x % 2 = 0 then x / 2 else 3 * x + 1

⇝ JfK : Z → Z

“A value is, a computation does” – P. B. Levy

An effect is something that a computation can do when interacting with its environment:
▶ Print a message in the screen.
▶ Read some bytes from a network socket.
▶ Use a memory cell to store a value.



Idioms, arrows and monads

We think of effects as given by primitive operations. E.g., read : 1⇝ B,write : B⇝ 1

But how do we compose such primitive operations to obtain a program?
▶ Monads
▶ Idioms, or applicative functors
▶ Arrows



Idioms, arrows and monads

We think of effects as given by primitive operations. E.g., read : 1⇝ B,write : B⇝ 1

But how do we compose such primitive operations to obtain a program?
▶ Monads
m :: * -> *
return :: a -> m a
bind :: m a -> (a -> m b) -> m b

▶ Idioms, or applicative functors
▶ Arrows



Idioms, arrows and monads

We think of effects as given by primitive operations. E.g., read : 1⇝ B,write : B⇝ 1

But how do we compose such primitive operations to obtain a program?
▶ Monads
▶ Idioms, or applicative functors
f :: * -> *
pure :: a -> f a
app :: f a -> f (a -> b) -> f b

▶ Arrows



Idioms, arrows and monads

We think of effects as given by primitive operations. E.g., read : 1⇝ B,write : B⇝ 1

But how do we compose such primitive operations to obtain a program?
▶ Monads
▶ Idioms, or applicative functors
▶ Arrows
p :: * -> * -> *
first :: p a b -> p (a, c) (b, c)
arr :: (a -> b) -> p a b
(>>>) :: p a b -> p b c -> p a c



Procontainers
for

idioms, arrows and monads



Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
▶ For monads m : * -> *
▶ For idioms f : * -> *.

Monad: monoid in
(

Cont, ◦, Id
)

, idiom: monoid in
(

Cont, ⋆, Id
)

.

What about arrows? In the definition, p is not an endofunctor... it is a profunctor:

p :: * -> * -> *

Can we find procontainers such that arrows are monoids w.r.t. a monoidal structure?



Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
▶ For monads m : * -> *
▶ For idioms f : * -> *.

Monad: monoid in
(

Cont, ◦, Id
)

, idiom: monoid in
(

Cont, ⋆, Id
)

.

What about arrows? In the definition, p is not an endofunctor... it is a profunctor:

p :: * -> * -> *

Can we find procontainers such that arrows are monoids w.r.t. a monoidal structure?



Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
▶ For monads m : * -> *
▶ For idioms f : * -> *.

Monad: monoid in
(

Cont, ◦, Id
)

, idiom: monoid in
(

Cont, ⋆, Id
)

.

What about arrows? In the definition, p is not an endofunctor... it is a profunctor:

p :: * -> * -> *

Can we find procontainers such that arrows are monoids w.r.t. a monoidal structure?



Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
▶ For monads m : * -> *
▶ For idioms f : * -> *.

Monad: monoid in
(

Cont, ◦, Id
)

, idiom: monoid in
(

Cont, ⋆, Id
)

.

What about arrows? In the definition, p is not an endofunctor... it is a profunctor:

p :: * -> * -> *

Can we find procontainers such that arrows are monoids w.r.t. a monoidal structure?



Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
▶ For monads m : * -> *
▶ For idioms f : * -> *.

Monad: monoid in
(

Cont, ◦, Id
)

, idiom: monoid in
(

Cont, ⋆, Id
)

.

What about arrows? In the definition, p is not an endofunctor... it is a profunctor:

p :: * -> * -> *

Can we find procontainers such that arrows are monoids w.r.t. a monoidal structure?



Containers for idioms and monads... and arrows?

Containers are a class of endofunctors.

Interfaces of computational effects build on endofunctors:
▶ For monads m : * -> *
▶ For idioms f : * -> *.

Monad: monoid in
(

Cont, ◦, Id
)

, idiom: monoid in
(

Cont, ⋆, Id
)

.

What about arrows? In the definition, p is not an endofunctor... it is a profunctor:

p :: * -> * -> *

Can we find procontainers such that arrows are monoids w.r.t. a monoidal structure?



Procontainers
for

idioms, arrows and monads



Procontainers
Procontainers are a class of profunctors

P : Setop × Set → Set

They are of the form ∑
s∈S

X ⇒

 ∑
p+∈P+(s)

P−(s, p+) ⇒ Y


for data

S : Set, P+ : S → Set, P− :
∑
s∈S

P+(s) → Set

Equivalently,
F −→ E −→ B



Procontainers
Procontainers are a class of profunctors

P : Setop × Set → Set

They are of the form ∑
s∈S

X ⇒

 ∑
p+∈P+(s)

P−(s, p+) ⇒ Y


for data

S : Set, P+ : S → Set, P− :
∑
s∈S

P+(s) → Set

Equivalently,
F −→ E −→ B



Procontainers
Procontainers are a class of profunctors

P : Setop × Set → Set

They are of the form ∑
s∈S

X ⇒

 ∑
p+∈P+(s)

P−(s, p+) ⇒ Y


for data

S : Set, P+ : S → Set, P− :
∑
s∈S

P+(s) → Set

Equivalently,
F −→ E −→ B



Procontainers

A value of JS ▷ PK X is a shape together with a function, giving an X value for each position.

E.g. for List = N ▷ Fin,[
true, false, true

]
: JN ▷ FinK B =

(
3 : N, {•0 7→ true, •1 7→ false, •2 7→ true} : Fin 3 → B

)
A procontainer could be pictured as sort of a set of containers.
A value of JS ▷ P+ ▷ P−K (X, Y) is a choice of a container (s ∈ S) together with a function

X → JP+(s) ▷ P−(s)K Y



Procontainers

A value of JS ▷ PK X is a shape together with a function, giving an X value for each position.
E.g. for List = N ▷ Fin,[

true, false, true
]
: JN ▷ FinK B =

(
3 : N, {•0 7→ true, •1 7→ false, •2 7→ true} : Fin 3 → B

)

A procontainer could be pictured as sort of a set of containers.
A value of JS ▷ P+ ▷ P−K (X, Y) is a choice of a container (s ∈ S) together with a function

X → JP+(s) ▷ P−(s)K Y



Procontainers

A value of JS ▷ PK X is a shape together with a function, giving an X value for each position.
E.g. for List = N ▷ Fin,[

true, false, true
]
: JN ▷ FinK B =

(
3 : N, {•0 7→ true, •1 7→ false, •2 7→ true} : Fin 3 → B

)
A procontainer could be pictured as sort of a set of containers.
A value of JS ▷ P+ ▷ P−K (X, Y) is a choice of a container (s ∈ S) together with a function

X → JP+(s) ▷ P−(s)K Y



Procontainers

Given a signature
{

opσ : Aσ ⇝ Bσ

}
σ∈Σ, encoded as a polynomial:(∑

σ:Σ

Aσ
)

▷ λ(σ, _).Bσ

where each operation op : A⇝ B is represented as a functor F(X) = A × (B ⇒ X).

As a procontainer, we can encode it separating Σ from Aσ :

Σ ▷ λσ.Aσ ▷ λ(σ, _).Bσ

where op : A⇝ B is represented as the profunctor F(X, Y) = X ⇒ (A × (B ⇒ Y)).



Procontainers

Given a signature
{

opσ : Aσ ⇝ Bσ

}
σ∈Σ, encoded as a polynomial:(∑

σ:Σ

Aσ
)

▷ λ(σ, _).Bσ

where each operation op : A⇝ B is represented as a functor F(X) = A × (B ⇒ X).

As a procontainer, we can encode it separating Σ from Aσ :

Σ ▷ λσ.Aσ ▷ λ(σ, _).Bσ

where op : A⇝ B is represented as the profunctor F(X, Y) = X ⇒ (A × (B ⇒ Y)).



Procontainers
As in the case of containers, procontainers form a category.

Natural transformations between realized profunctors of P = S ▷ P+ ▷ P− and Q = T ▷ Q+ ▷ Q−

αX,Y :
q

S ▷ P+ ▷ P−
y (

X, Y
)
−→

q
T ▷ Q+ ▷ Q−y (

X, Y
)

A procontainer morphism is given by
▶ f : S → T
▶ f+ : ∀s.P+(s) → Q+(f(s))
▶ f− : ∀s.∀p+.Q−(f(s), f+(p+)) → P−(s, p+)



Procontainers
As in the case of containers, procontainers form a category.

Natural transformations between realized profunctors of P = S ▷ P+ ▷ P− and Q = T ▷ Q+ ▷ Q−

αX,Y :
q

S ▷ P+ ▷ P−
y (

X, Y
)
−→

q
T ▷ Q+ ▷ Q−y (

X, Y
)

A procontainer morphism is given by
▶ f : S → T
▶ f+ : ∀s.P+(s) → Q+(f(s))
▶ f− : ∀s.∀p+.Q−(f(s), f+(p+)) → P−(s, p+)



Procontainers
As in the case of containers, procontainers form a category.

Natural transformations between realized profunctors of P = S ▷ P+ ▷ P− and Q = T ▷ Q+ ▷ Q−

αX,Y :
∑
s∈S

X ⇒
∑

p+∈P+(s)
P−(s, p+) ⇒ Y

 −→
∑
t∈T

X ⇒
∑

q+∈Q+(t)
Q−(t, q+) ⇒ Y



A procontainer morphism is given by
▶ f : S → T
▶ f+ : ∀s.P+(s) → Q+(f(s))
▶ f− : ∀s.∀p+.Q−(f(s), f+(p+)) → P−(s, p+)



Procontainers
As in the case of containers, procontainers form a category.

Natural transformations between realized profunctors of P = S ▷ P+ ▷ P− and Q = T ▷ Q+ ▷ Q−

αX,Y :
∑
s∈S

X ⇒
∑

p+∈P+(s)
P−(s, p+) ⇒ Y

 −→
∑
t∈T

X ⇒
∑

q+∈Q+(t)
Q−(t, q+) ⇒ Y



A procontainer morphism is given by
▶ f : S → T
▶ f+ : ∀s.P+(s) → Q+(f(s))
▶ f− : ∀s.∀p+.Q−(f(s), f+(p+)) → P−(s, p+)



Procontainers

They are closed under useful constructors:
▶ Products
▶ Coproducts
▶ Bénabou’s composition

Recall: Bénabou’s composition is the horizontal composition of two profunctors:

(
P ⊗ Q : C ↛ E

)
(X, Y) =

∫ I∈D
P(X, I)× Q(I, Y)

Picking an object, endoprofunctors with Bénabou’s composition form with it a monoidal structure,
with Hom as unit.



Procontainers

They are closed under useful constructors:
▶ Products
▶ Coproducts
▶ Bénabou’s composition

Recall: Bénabou’s composition is the horizontal composition of two profunctors:

(
P ⊗ Q : C ↛ E

)
(X, Y) =

∫ I∈D
P(X, I)× Q(I, Y)

Picking an object, endoprofunctors with Bénabou’s composition form with it a monoidal structure,
with Hom as unit.



Procontainers

They are closed under useful constructors:
▶ Products
▶ Coproducts
▶ Bénabou’s composition

Recall: Bénabou’s composition is the horizontal composition of two profunctors:

(
P ⊗ Q : C ↛ E

)
(X, Y) =

∫ I∈D
P(X, I)× Q(I, Y)

Picking an object, endoprofunctors with Bénabou’s composition form with it a monoidal structure,
with Hom as unit.



Procontainers

For procontainers, P = S ▷ P+ ▷ P−, Q = T ▷ Q+ ▷ Q−:

P ⊗ Q =(S × T) ▷ (λ(s, t).
∑

s+∈P+s
(P−(s, s+) ⇒ Q+(t)))

▷ λ(s, t)(s+, f).
∑

s−∈P−(s,s+)
Q−(t, f(s−))

A monoid w.r.t. this structure has:
m : P ⊗ P −→ P e : Hom −→ P

mX,Y :
∫ I∈D P(X, I)× P(I, Y) −→ P(X, Y) eX,Y : Hom(X, Y) −→ P(X, Y)

(>>>) :: (p x i, p i y) -> p x y arr :: (x -> y) -> p x y



Procontainers

For procontainers, P = S ▷ P+ ▷ P−, Q = T ▷ Q+ ▷ Q−:

P ⊗ Q =(S × T) ▷ (λ(s, t).
∑

s+∈P+s
(P−(s, s+) ⇒ Q+(t)))

▷ λ(s, t)(s+, f).
∑

s−∈P−(s,s+)
Q−(t, f(s−))

A monoid w.r.t. this structure has:
m : P ⊗ P −→ P e : Hom −→ P

mX,Y :
∫ I∈D P(X, I)× P(I, Y) −→ P(X, Y) eX,Y : Hom(X, Y) −→ P(X, Y)

(>>>) :: (p x i, p i y) -> p x y arr :: (x -> y) -> p x y



Procontainers

For procontainers, P = S ▷ P+ ▷ P−, Q = T ▷ Q+ ▷ Q−:

P ⊗ Q =(S × T) ▷ (λ(s, t).
∑

s+∈P+s
(P−(s, s+) ⇒ Q+(t)))

▷ λ(s, t)(s+, f).
∑

s−∈P−(s,s+)
Q−(t, f(s−))

A monoid w.r.t. this structure has:
m : P ⊗ P −→ P e : Hom −→ P

mX,Y :
∫ I∈D P(X, I)× P(I, Y) −→ P(X, Y) eX,Y : Hom(X, Y) −→ P(X, Y)

(>>>) :: (p x i, p i y) -> p x y arr :: (x -> y) -> p x y



Procontainers

For procontainers, P = S ▷ P+ ▷ P−, Q = T ▷ Q+ ▷ Q−:

P ⊗ Q =(S × T) ▷ (λ(s, t).
∑

s+∈P+s
(P−(s, s+) ⇒ Q+(t)))

▷ λ(s, t)(s+, f).
∑

s−∈P−(s,s+)
Q−(t, f(s−))

A monoid w.r.t. this structure has:
m : P ⊗ P −→ P e : Hom −→ P

mX,Y :
∫ I∈D P(X, I)× P(I, Y) −→ P(X, Y) eX,Y : Hom(X, Y) −→ P(X, Y)

(>>>) :: (p x i, p i y) -> p x y arr :: (x -> y) -> p x y



Procontainers

What about first?

first :: p x y -> p (x, z) (y, z)

We are interested in strong profunctors and strong natural transformations:

stX,Y,Z : P(X, Y) −→ P(X × Z, Y × Z)

Procontainers come with a canonical strength. Moreover, this strength is unique.

stX,Y,Z :
q

S ▷ P+ ▷ P−
y
(X, Y) −→

q
S ▷ P+ ▷ P−

y
(X × Z, Y × Z)

And all morphisms between procontainers are strong as well.



Procontainers

What about first?

first :: p x y -> p (x, z) (y, z)

We are interested in strong profunctors and strong natural transformations:

stX,Y,Z : P(X, Y) −→ P(X × Z, Y × Z)

Procontainers come with a canonical strength. Moreover, this strength is unique.

stX,Y,Z :
q

S ▷ P+ ▷ P−
y
(X, Y) −→

q
S ▷ P+ ▷ P−

y
(X × Z, Y × Z)

And all morphisms between procontainers are strong as well.



Procontainers

What about first?

first :: p x y -> p (x, z) (y, z)

We are interested in strong profunctors and strong natural transformations:

stX,Y,Z : P(X, Y) −→ P(X × Z, Y × Z)

Procontainers come with a canonical strength. Moreover, this strength is unique.

stX,Y,Z :
q

S ▷ P+ ▷ P−
y
(X, Y) −→

q
S ▷ P+ ▷ P−

y
(X × Z, Y × Z)

And all morphisms between procontainers are strong as well.



Procontainers

What about first?

first :: p x y -> p (x, z) (y, z)

We are interested in strong profunctors and strong natural transformations:

stX,Y,Z : P(X, Y) −→ P(X × Z, Y × Z)

Procontainers come with a canonical strength. Moreover, this strength is unique.

stX,Y,Z :
q

S ▷ P+ ▷ P−
y
(X, Y) −→

q
S ▷ P+ ▷ P−

y
(X × Z, Y × Z)

And all morphisms between procontainers are strong as well.



Procontainers

What about first?

first :: p x y -> p (x, z) (y, z)

We are interested in strong profunctors and strong natural transformations:

stX,Y,Z : P(X, Y) −→ P(X × Z, Y × Z)

Procontainers come with a canonical strength. Moreover, this strength is unique.

stX,Y,Z :
q

S ▷ P+ ▷ P−
y
(X, Y) −→

q
S ▷ P+ ▷ P−

y
(X × Z, Y × Z)

And all morphisms between procontainers are strong as well.



Adjunctions between containers and procontainers
There are a number of connections between containers and procontainers:

Cont
−∗

22⊥ Procont
−∗

rr

−∗
22⊥ Cont

−!rr

Moreover, these adjunctions respect monoidal structures which encode how computational effects
on different interfaces relate.

(
Cont, ◦

)
−∗

11⊥
(

Procont,⊗
)−∗

qq

−∗
11⊥
(

Cont, ⋆
)−!qq

Also, we can characterise when a procontainer is an arrow (similar to T. Uustalu combinatorics of
containers).



Adjunctions between containers and procontainers
There are a number of connections between containers and procontainers:

Cont
−∗

22⊥ Procont
−∗

rr

−∗
22⊥ Cont

−!rr

Moreover, these adjunctions respect monoidal structures which encode how computational effects
on different interfaces relate.

(
Cont, ◦

)
−∗

11⊥
(

Procont,⊗
)−∗

qq

−∗
11⊥
(

Cont, ⋆
)−!qq

Also, we can characterise when a procontainer is an arrow (similar to T. Uustalu combinatorics of
containers).



Adjunctions between containers and procontainers
There are a number of connections between containers and procontainers:

Cont
−∗

22⊥ Procont
−∗

rr

−∗
22⊥ Cont

−!rr

Moreover, these adjunctions respect monoidal structures which encode how computational effects
on different interfaces relate.

(
Cont, ◦

)
−∗

11⊥
(

Procont,⊗
)−∗

qq

−∗
11⊥
(

Cont, ⋆
)−!qq

Also, we can characterise when a procontainer is an arrow (similar to T. Uustalu combinatorics of
containers).



Questions? Thanks!


	First Section

