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still derivable in the new theory, but might be identified via the
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• In particular, we always have a (unique) identity-on-objects
functor
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• Moreover, this functor will always preserve products strictly
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η : C(−,=)→ P(−,=)

◦ Every disappointment has something to live up to
◦ Not necessarily injective
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• We’re not always interested in notions of computation in the
most general sense

• Sometimes we want to ensure that our computations are
somehow ‘finitely describable’:

◦ If we have a monad T on Set, we might hope that a
computation c ∈ TX can be described using at most finitely
many elements of X

◦ For example, computations might be formal sums of at most
finitely many elements

• If we’re looking for a connection with universal algebra, this is
certainly a sensible restriction!
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Finitary monads

• Category theory gives us some very technical, but very useful,
notions of finiteness in general categories

• As we’re only really interested in monads on Set today:

◦ A monad T on Set is finitary iff for every set X and element
c ∈ TX , there is a finite subset i : X0 ↣ X through which c
factors:

{⋆} TX

TX0

c

c0 Ti

• We’ll call the full subcategory of Mnd(Set) spanned by
finitary monads Mndfin(Set)

• It only really matters what T does to finite sets!
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• For each J : C → E , we get a category RMnd(J) of monads

relative to J and natural transformations preserving the
structure
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• Hopefully you’ve got some intuitions for some of these and
can go away and look at the details
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