
Understanding the classical monad-theory
correspondence

Nathan Corbyn

University of Oxford

MSFP 08.07.2024



Objective

• Prove the equivalence:

Law ≃ Mndfin(Set)



Objective

• Prove the equivalence:

Law ≃ Mndfin(Set)



Objective

• ProveUnderstand the equivalence:

Law ≃ Mndfin(Set)



Plan

• Take three steps:

Law ≃ ProMnd×(F
op)

≃ RMnd(F ↪→ Set)

≃ Mndfin(Set)

• Although not necessary to write down a proof, hopefully these
all feel very natural by the end!

• Arkor’s thesis takes this approach in extreme generality



Plan

• Take three steps:

Law ≃ ProMnd×(F
op)

≃ RMnd(F ↪→ Set)

≃ Mndfin(Set)

• Although not necessary to write down a proof, hopefully these
all feel very natural by the end!

• Arkor’s thesis takes this approach in extreme generality



Plan

• Take three steps:

Law ≃ ProMnd×(F
op)

≃ RMnd(F ↪→ Set)

≃ Mndfin(Set)

• Although not necessary to write down a proof, hopefully these
all feel very natural by the end!

• Arkor’s thesis takes this approach in extreme generality



Plan

• Take three steps:

Law ≃ ProMnd×(F
op)

≃ RMnd(F ↪→ Set)

≃ Mndfin(Set)

• Although not necessary to write down a proof, hopefully these
all feel very natural by the end!

• Arkor’s thesis takes this approach in extreme generality



Plan

• Take three steps:

Law ≃ ProMnd×(F
op)

≃ RMnd(F ↪→ Set)

≃ Mndfin(Set)

• Although not necessary to write down a proof, hopefully these
all feel very natural by the end!

• Arkor’s thesis takes this approach in extreme generality



Outline

Part I
Lawvere theories
Cartesian promonads
Law ≃ ProMnd×(Fop)

Part II
Finitary monads
Relative monads
RMnd(F ↪→ Set) ≃ Mndfin(Set)

Part III
ProMnd×(Fop) ≃ RMnd(F ↪→ Set)



Part I



Lawvere theories

• Presentation invariant descriptions of algebraic theories

• Can be quite tricky to wrap your head around



Lawvere theories

• Presentation invariant descriptions of algebraic theories

• Can be quite tricky to wrap your head around



Lawvere theories

• Presentation invariant descriptions of algebraic theories

• Can be quite tricky to wrap your head around



Lawvere theories

• Consider a presentation of the theory of monoids:

u : 0 ⊕ : 2

u ⊕ x = x

x⊕ u = x

(x⊕ y)⊕ z = x⊕ (y⊕ z)



Lawvere theories

• Consider a presentation of the theory of monoids:

u : 0 ⊕ : 2

u ⊕ x = x

x⊕ u = x

(x⊕ y)⊕ z = x⊕ (y⊕ z)



Lawvere theories

• Consider a presentation of the theory of monoids:

u : 0 ⊕ : 2

u ⊕ x = x

x⊕ u = x

(x⊕ y)⊕ z = x⊕ (y⊕ z)



Lawvere theories

• We get lots of derivable operations

—e.g.,

x⊕ (y⊕ (z⊕ w))

x⊕ x

(u ⊕ x)⊕ (x⊕ u)

(x⊕ y)⊕ (z⊕ w)

• Some of these are provably equal:

x⊕ x = (u ⊕ x)⊕ (x⊕ u)

(x⊕ y)⊕ (z⊕ w) = x⊕ (y⊕ (z⊕ w))

• Important: Copying and discarding of variables is allowed



Lawvere theories

• We get lots of derivable operations—e.g.,

x⊕ (y⊕ (z⊕ w))

x⊕ x

(u ⊕ x)⊕ (x⊕ u)

(x⊕ y)⊕ (z⊕ w)

• Some of these are provably equal:

x⊕ x = (u ⊕ x)⊕ (x⊕ u)

(x⊕ y)⊕ (z⊕ w) = x⊕ (y⊕ (z⊕ w))

• Important: Copying and discarding of variables is allowed



Lawvere theories

• We get lots of derivable operations—e.g.,

x⊕ (y⊕ (z⊕ w))

x⊕ x

(u ⊕ x)⊕ (x⊕ u)

(x⊕ y)⊕ (z⊕ w)

• Some of these are provably equal

:

x⊕ x = (u ⊕ x)⊕ (x⊕ u)

(x⊕ y)⊕ (z⊕ w) = x⊕ (y⊕ (z⊕ w))

• Important: Copying and discarding of variables is allowed



Lawvere theories

• We get lots of derivable operations—e.g.,

x⊕ (y⊕ (z⊕ w))

x⊕ x

(u ⊕ x)⊕ (x⊕ u)

(x⊕ y)⊕ (z⊕ w)

• Some of these are provably equal:

x⊕ x = (u ⊕ x)⊕ (x⊕ u)

(x⊕ y)⊕ (z⊕ w) = x⊕ (y⊕ (z⊕ w))

• Important: Copying and discarding of variables is allowed



Lawvere theories

• We get lots of derivable operations—e.g.,

x⊕ (y⊕ (z⊕ w))

x⊕ x

(u ⊕ x)⊕ (x⊕ u)

(x⊕ y)⊕ (z⊕ w)

• Some of these are provably equal:

x⊕ x = (u ⊕ x)⊕ (x⊕ u)

(x⊕ y)⊕ (z⊕ w) = x⊕ (y⊕ (z⊕ w))

• Important: Copying and discarding of variables is allowed



Lawvere theories

• Lawvere’s idea: no matter how you present the theory, the
same operations should be derivable and satisfy the same
equations

• A Lawvere theory bundles derivable operations and their
equations into a category



Lawvere theories

• Lawvere’s idea: no matter how you present the theory, the
same operations should be derivable and satisfy the same
equations

• A Lawvere theory bundles derivable operations and their
equations into a category



Lawvere theories

• Lawvere’s idea: no matter how you present the theory, the
same operations should be derivable and satisfy the same
equations

• A Lawvere theory bundles derivable operations and their
equations into a category



Lawvere theories

• What does this look like?

• For each n ∈ N, write down the set of derivable operations in
at most n variables, modulo provable equality:

T (n, 1)

• Extend this to all m ∈ N taking

T (n, 0) = {⋆}
T (n,m + 1) = T (n,m)× T (n, 1)

• In other words, T (n,m) consists of tuples of m operations
each in (at most) n variables



Lawvere theories

• What does this look like?

• For each n ∈ N, write down the set of derivable operations in
at most n variables, modulo provable equality:

T (n, 1)

• Extend this to all m ∈ N taking

T (n, 0) = {⋆}
T (n,m + 1) = T (n,m)× T (n, 1)

• In other words, T (n,m) consists of tuples of m operations
each in (at most) n variables



Lawvere theories

• What does this look like?

• For each n ∈ N, write down the set of derivable operations in
at most n variables, modulo provable equality:

T (n, 1)

• Extend this to all m ∈ N taking

T (n, 0) = {⋆}
T (n,m + 1) = T (n,m)× T (n, 1)

• In other words, T (n,m) consists of tuples of m operations
each in (at most) n variables



Lawvere theories

• What does this look like?

• For each n ∈ N, write down the set of derivable operations in
at most n variables, modulo provable equality:

T (n, 1)

• Extend this to all m ∈ N taking

T (n, 0) = {⋆}
T (n,m + 1) = T (n,m)× T (n, 1)

• In other words, T (n,m) consists of tuples of m operations
each in (at most) n variables



Lawvere theories

• What does this look like?

• For each n ∈ N, write down the set of derivable operations in
at most n variables, modulo provable equality:

T (n, 1)

• Extend this to all m ∈ N taking

T (n, 0) = {⋆}
T (n,m + 1) = T (n,m)× T (n, 1)

• In other words, T (n,m) consists of tuples of m operations
each in (at most) n variables



Lawvere theories

• Idea: T (−,=) describes the hom-sets of a category.

• Composition is substitution!

T (n,m)︸ ︷︷ ︸
m operations in n variables

× T (m, 1)︸ ︷︷ ︸
1 operation in m variables

↓
T (n, 1)︸ ︷︷ ︸

substitute the m variables for the m derived operations



Lawvere theories

• Idea: T (−,=) describes the hom-sets of a category.

• Composition is substitution!

T (n,m)︸ ︷︷ ︸
m operations in n variables

× T (m, 1)︸ ︷︷ ︸
1 operation in m variables

↓
T (n, 1)︸ ︷︷ ︸

substitute the m variables for the m derived operations



Lawvere theories

• Idea: T (−,=) describes the hom-sets of a category.

• Composition is substitution!

T (n,m)︸ ︷︷ ︸
m operations in n variables

× T (m, 1)︸ ︷︷ ︸
1 operation in m variables

↓
T (n, 1)︸ ︷︷ ︸

substitute the m variables for the m derived operations



Lawvere theories

• Idea: T (−,=) describes the hom-sets of a category.

• Composition is substitution!

T (n,m)︸ ︷︷ ︸
m operations in n variables

× T (m, 1)︸ ︷︷ ︸
1 operation in m variables

↓
T (n, 1)︸ ︷︷ ︸

substitute the m variables for the m derived operations



Lawvere theories

• We get more than just a category, we get a cartesian category:

n
⟨xi ⟩i∈n←−−−− n +m

⟨xi+n⟩i∈m−−−−−→ m n
⟨⟩−→ 0

• This is intimately connected with the fact that we’ve allowed
variables to be copied and discarded



Lawvere theories

• We get more than just a category, we get a cartesian category

:

n
⟨xi ⟩i∈n←−−−− n +m

⟨xi+n⟩i∈m−−−−−→ m n
⟨⟩−→ 0

• This is intimately connected with the fact that we’ve allowed
variables to be copied and discarded



Lawvere theories

• We get more than just a category, we get a cartesian category:

n
⟨xi ⟩i∈n←−−−− n +m

⟨xi+n⟩i∈m−−−−−→ m n
⟨⟩−→ 0

• This is intimately connected with the fact that we’ve allowed
variables to be copied and discarded



Lawvere theories

• We get more than just a category, we get a cartesian category:

n
⟨xi ⟩i∈n←−−−− n +m

⟨xi+n⟩i∈m−−−−−→ m n
⟨⟩−→ 0

• This is intimately connected with the fact that we’ve allowed
variables to be copied and discarded



Relationship to Fop

• Call F the category with objects n ∈ N and morphisms
F(n,m) = n→ m

• Claim: Fop corresponds to the Lawvere theory determined by
the empty presentation:

◦ The only derivable operations are the variables:

T∅(n, 1) = n
∼= F(1, n)

◦ Extending,

T∅(n, 0) = {⋆} ∼= F(0, n)

T∅(n,m + 1) = T∅(n,m)× T∅(n, 1)
∼= F(m, n)× F (1, n)
∼= F(m + 1, n)



Relationship to Fop

• Call F the category with objects n ∈ N and morphisms
F(n,m) = n→ m

• Claim: Fop corresponds to the Lawvere theory determined by
the empty presentation:

◦ The only derivable operations are the variables:

T∅(n, 1) = n
∼= F(1, n)

◦ Extending,

T∅(n, 0) = {⋆} ∼= F(0, n)

T∅(n,m + 1) = T∅(n,m)× T∅(n, 1)
∼= F(m, n)× F (1, n)
∼= F(m + 1, n)



Relationship to Fop

• Call F the category with objects n ∈ N and morphisms
F(n,m) = n→ m

• Claim: Fop corresponds to the Lawvere theory determined by
the empty presentation:

◦ The only derivable operations are the variables:

T∅(n, 1) = n
∼= F(1, n)

◦ Extending,

T∅(n, 0) = {⋆} ∼= F(0, n)

T∅(n,m + 1) = T∅(n,m)× T∅(n, 1)
∼= F(m, n)× F (1, n)
∼= F(m + 1, n)



Relationship to Fop

• Call F the category with objects n ∈ N and morphisms
F(n,m) = n→ m

• Claim: Fop corresponds to the Lawvere theory determined by
the empty presentation:

◦ The only derivable operations are the variables

:

T∅(n, 1) = n
∼= F(1, n)

◦ Extending,

T∅(n, 0) = {⋆} ∼= F(0, n)

T∅(n,m + 1) = T∅(n,m)× T∅(n, 1)
∼= F(m, n)× F (1, n)
∼= F(m + 1, n)



Relationship to Fop

• Call F the category with objects n ∈ N and morphisms
F(n,m) = n→ m

• Claim: Fop corresponds to the Lawvere theory determined by
the empty presentation:

◦ The only derivable operations are the variables:

T∅(n, 1) = n
∼= F(1, n)

◦ Extending,

T∅(n, 0) = {⋆} ∼= F(0, n)

T∅(n,m + 1) = T∅(n,m)× T∅(n, 1)
∼= F(m, n)× F (1, n)
∼= F(m + 1, n)



Relationship to Fop

• Call F the category with objects n ∈ N and morphisms
F(n,m) = n→ m

• Claim: Fop corresponds to the Lawvere theory determined by
the empty presentation:

◦ The only derivable operations are the variables:

T∅(n, 1) = n
∼= F(1, n)

◦ Extending,

T∅(n, 0) = {⋆} ∼= F(0, n)

T∅(n,m + 1) = T∅(n,m)× T∅(n, 1)
∼= F(m, n)× F (1, n)
∼= F(m + 1, n)



Relationship to Fop

• If we have two presentations Θ ⊆ Θ′, we get a (unique)
corresponding identity-on-objects functor TΘ → TΘ′

◦ Hand-waving: All the operations derivable in the old theory are
still derivable in the new theory, but might be identified via the
new equations

• In particular, we always have a (unique) identity-on-objects
functor

Fop → TΘ

• Moreover, this functor will always preserve products strictly

• We can use this to define Lawvere theories semantically!



Relationship to Fop

• If we have two presentations Θ ⊆ Θ′, we get a (unique)
corresponding identity-on-objects functor TΘ → TΘ′

◦ Hand-waving: All the operations derivable in the old theory are
still derivable in the new theory, but might be identified via the
new equations

• In particular, we always have a (unique) identity-on-objects
functor

Fop → TΘ

• Moreover, this functor will always preserve products strictly

• We can use this to define Lawvere theories semantically!



Relationship to Fop

• If we have two presentations Θ ⊆ Θ′, we get a (unique)
corresponding identity-on-objects functor TΘ → TΘ′

◦ Hand-waving: All the operations derivable in the old theory are
still derivable in the new theory, but might be identified via the
new equations

• In particular, we always have a (unique) identity-on-objects
functor

Fop → TΘ

• Moreover, this functor will always preserve products strictly

• We can use this to define Lawvere theories semantically!



Relationship to Fop

• If we have two presentations Θ ⊆ Θ′, we get a (unique)
corresponding identity-on-objects functor TΘ → TΘ′

◦ Hand-waving: All the operations derivable in the old theory are
still derivable in the new theory, but might be identified via the
new equations

• In particular, we always have a (unique) identity-on-objects
functor

Fop → TΘ

• Moreover, this functor will always preserve products strictly

• We can use this to define Lawvere theories semantically!



Relationship to Fop

• If we have two presentations Θ ⊆ Θ′, we get a (unique)
corresponding identity-on-objects functor TΘ → TΘ′

◦ Hand-waving: All the operations derivable in the old theory are
still derivable in the new theory, but might be identified via the
new equations

• In particular, we always have a (unique) identity-on-objects
functor

Fop → TΘ

• Moreover, this functor will always preserve products strictly

• We can use this to define Lawvere theories semantically!



Relationship to Fop

• If we have two presentations Θ ⊆ Θ′, we get a (unique)
corresponding identity-on-objects functor TΘ → TΘ′

◦ Hand-waving: All the operations derivable in the old theory are
still derivable in the new theory, but might be identified via the
new equations

• In particular, we always have a (unique) identity-on-objects
functor

Fop → TΘ

• Moreover, this functor will always preserve products strictly

• We can use this to define Lawvere theories semantically!



Semantic definition

• Definition: a Lawvere theory is a category T equipped with a
strictly product-preserving identity-on-objects functor
J : Fop → T

• We obtain a category Law of Lawvere theories and triangles:

T T ′

Fop

F

J J′



Semantic definition

• Definition: a Lawvere theory is a category T equipped with a
strictly product-preserving identity-on-objects functor
J : Fop → T

• We obtain a category Law of Lawvere theories and triangles:

T T ′

Fop

F

J J′



Semantic definition

• Definition: a Lawvere theory is a category T equipped with a
strictly product-preserving identity-on-objects functor
J : Fop → T

• We obtain a category Law of Lawvere theories and triangles:

T T ′

Fop

F

J J′



Promonads

• Definition: A promonad is a monoid in the category of
endoprofunctors on a category C



Promonads

• Definition: A promonad is a monoid in the category of
endoprofunctors on a category C



Promonads

• Definition: A promonad is a monoid in the category of
endoprofunctors on a category C



Promonads

• Definition: A promonad is a profunctor P : Cop × C → Set
equipped with maps

µ :

∫ c:C
P(−, c)× P(c ,=)→ P(−,=)

η : C(−,=)→ P(−,=)

subject to...



Promonads

• Definition: A promonad is a profunctor P : Cop × C → Set
equipped with maps

µ :

∫ c:C
P(−, c)× P(c ,=)→ P(−,=)

η : C(−,=)→ P(−,=)

subject to...



Promonads

• Definition: A promonad is a profunctor P : Cop × C → Set
equipped with maps

µ :

∫ c:C
P(−, c)× P(c ,=)→ P(−,=)

η : C(−,=)→ P(−,=)

subject to...



Promonads

• Promonads are an extremely useful way to build new
categories from old ones

• Promonads show up everywhere but aren’t given the credit
they deserve



Promonads

• Promonads are an extremely useful way to build new
categories from old ones

• Promonads show up everywhere but aren’t given the credit
they deserve



Promonads

• Promonads are an extremely useful way to build new
categories from old ones

• Promonads show up everywhere but aren’t given the credit
they deserve



Promonads

• Say we have some category C
• We love the objects of C
• But the morphisms are a bit of a disappointment:

◦ Missing some maps
◦ Not enough equations
◦ Still important though!

• Promonads are a technical tool for describing the morphisms
we wish we had and how they relate to the morphisms we’ve
got right now

• If we set things up properly, we get a new category D with the
same objects as C and an identity-on-objects functor C → D



Promonads

• Say we have some category C

• We love the objects of C
• But the morphisms are a bit of a disappointment:

◦ Missing some maps
◦ Not enough equations
◦ Still important though!

• Promonads are a technical tool for describing the morphisms
we wish we had and how they relate to the morphisms we’ve
got right now

• If we set things up properly, we get a new category D with the
same objects as C and an identity-on-objects functor C → D



Promonads

• Say we have some category C
• We love the objects of C

• But the morphisms are a bit of a disappointment:

◦ Missing some maps
◦ Not enough equations
◦ Still important though!

• Promonads are a technical tool for describing the morphisms
we wish we had and how they relate to the morphisms we’ve
got right now

• If we set things up properly, we get a new category D with the
same objects as C and an identity-on-objects functor C → D



Promonads

• Say we have some category C
• We love the objects of C
• But the morphisms are a bit of a disappointment

:

◦ Missing some maps
◦ Not enough equations
◦ Still important though!

• Promonads are a technical tool for describing the morphisms
we wish we had and how they relate to the morphisms we’ve
got right now

• If we set things up properly, we get a new category D with the
same objects as C and an identity-on-objects functor C → D



Promonads

• Say we have some category C
• We love the objects of C
• But the morphisms are a bit of a disappointment:

◦ Missing some maps
◦ Not enough equations
◦ Still important though!

• Promonads are a technical tool for describing the morphisms
we wish we had and how they relate to the morphisms we’ve
got right now

• If we set things up properly, we get a new category D with the
same objects as C and an identity-on-objects functor C → D



Promonads

• Say we have some category C
• We love the objects of C
• But the morphisms are a bit of a disappointment:

◦ Missing some maps

◦ Not enough equations
◦ Still important though!

• Promonads are a technical tool for describing the morphisms
we wish we had and how they relate to the morphisms we’ve
got right now

• If we set things up properly, we get a new category D with the
same objects as C and an identity-on-objects functor C → D



Promonads

• Say we have some category C
• We love the objects of C
• But the morphisms are a bit of a disappointment:

◦ Missing some maps
◦ Not enough equations

◦ Still important though!

• Promonads are a technical tool for describing the morphisms
we wish we had and how they relate to the morphisms we’ve
got right now

• If we set things up properly, we get a new category D with the
same objects as C and an identity-on-objects functor C → D



Promonads

• Say we have some category C
• We love the objects of C
• But the morphisms are a bit of a disappointment:

◦ Missing some maps
◦ Not enough equations
◦ Still important though!

• Promonads are a technical tool for describing the morphisms
we wish we had and how they relate to the morphisms we’ve
got right now

• If we set things up properly, we get a new category D with the
same objects as C and an identity-on-objects functor C → D



Promonads

• Say we have some category C
• We love the objects of C
• But the morphisms are a bit of a disappointment:

◦ Missing some maps
◦ Not enough equations
◦ Still important though!

• Promonads are a technical tool for describing the morphisms
we wish we had and how they relate to the morphisms we’ve
got right now

• If we set things up properly, we get a new category D with the
same objects as C and an identity-on-objects functor C → D



Promonads

• Say we have some category C
• We love the objects of C
• But the morphisms are a bit of a disappointment:

◦ Missing some maps
◦ Not enough equations
◦ Still important though!

• Promonads are a technical tool for describing the morphisms
we wish we had and how they relate to the morphisms we’ve
got right now

• If we set things up properly, we get a new category D with the
same objects as C and an identity-on-objects functor C → D



Promonads

• How do we do this?

• Start with a profunctor P(−,=) : Cop × C → Set

◦ For each x , y ∈ C, P(x , y) is the hom-set you wish you had
◦ The functorial actions tell you how to compose your dream

maps with your disappointments

• Ask for a natural transformation

η : C(−,=)→ P(−,=)

◦ Every disappointment has something to live up to
◦ Not necessarily injective



Promonads

• How do we do this?

• Start with a profunctor P(−,=) : Cop × C → Set

◦ For each x , y ∈ C, P(x , y) is the hom-set you wish you had
◦ The functorial actions tell you how to compose your dream

maps with your disappointments

• Ask for a natural transformation

η : C(−,=)→ P(−,=)

◦ Every disappointment has something to live up to
◦ Not necessarily injective



Promonads

• How do we do this?

• Start with a profunctor P(−,=) : Cop × C → Set

◦ For each x , y ∈ C, P(x , y) is the hom-set you wish you had
◦ The functorial actions tell you how to compose your dream

maps with your disappointments

• Ask for a natural transformation

η : C(−,=)→ P(−,=)

◦ Every disappointment has something to live up to
◦ Not necessarily injective



Promonads

• How do we do this?

• Start with a profunctor P(−,=) : Cop × C → Set

◦ For each x , y ∈ C, P(x , y) is the hom-set you wish you had

◦ The functorial actions tell you how to compose your dream
maps with your disappointments

• Ask for a natural transformation

η : C(−,=)→ P(−,=)

◦ Every disappointment has something to live up to
◦ Not necessarily injective



Promonads

• How do we do this?

• Start with a profunctor P(−,=) : Cop × C → Set

◦ For each x , y ∈ C, P(x , y) is the hom-set you wish you had
◦ The functorial actions tell you how to compose your dream

maps with your disappointments

• Ask for a natural transformation

η : C(−,=)→ P(−,=)

◦ Every disappointment has something to live up to
◦ Not necessarily injective



Promonads

• How do we do this?

• Start with a profunctor P(−,=) : Cop × C → Set

◦ For each x , y ∈ C, P(x , y) is the hom-set you wish you had
◦ The functorial actions tell you how to compose your dream

maps with your disappointments

• Ask for a natural transformation

η : C(−,=)→ P(−,=)

◦ Every disappointment has something to live up to
◦ Not necessarily injective



Promonads

• How do we do this?

• Start with a profunctor P(−,=) : Cop × C → Set

◦ For each x , y ∈ C, P(x , y) is the hom-set you wish you had
◦ The functorial actions tell you how to compose your dream

maps with your disappointments

• Ask for a natural transformation

η : C(−,=)→ P(−,=)

◦ Every disappointment has something to live up to

◦ Not necessarily injective



Promonads

• How do we do this?

• Start with a profunctor P(−,=) : Cop × C → Set

◦ For each x , y ∈ C, P(x , y) is the hom-set you wish you had
◦ The functorial actions tell you how to compose your dream

maps with your disappointments

• Ask for a natural transformation

η : C(−,=)→ P(−,=)

◦ Every disappointment has something to live up to
◦ Not necessarily injective



Promonads

• We’ve also got to explain how to compose our ideal maps

• For each c ∈ C we want to say we have a natural
transformation:

µc : P(−, c)× P(c ,=)→ P(−,=)

• But it’s a bit more subtle!



Promonads

• We’ve also got to explain how to compose our ideal maps

• For each c ∈ C we want to say we have a natural
transformation:

µc : P(−, c)× P(c ,=)→ P(−,=)

• But it’s a bit more subtle!



Promonads

• We’ve also got to explain how to compose our ideal maps

• For each c ∈ C we want to say we have a natural
transformation:

µc : P(−, c)× P(c ,=)→ P(−,=)

• But it’s a bit more subtle!



Promonads

• We’ve also got to explain how to compose our ideal maps

• For each c ∈ C we want to say we have a natural
transformation:

µc : P(−, c)× P(c ,=)→ P(−,=)

• But it’s a bit more subtle!



Promonads

• We need all our composition operations to line up with each
other

:

x c c ′ y

• The fancy way to say this is that we have a single natural
transformation

µ :

∫ c:C
P(−, c)× P(c ,=)→ P(−,=)



Promonads

• We need all our composition operations to line up with each
other:

x c c ′ y

• The fancy way to say this is that we have a single natural
transformation

µ :

∫ c:C
P(−, c)× P(c ,=)→ P(−,=)



Promonads

• We need all our composition operations to line up with each
other:

x c c ′ y

• The fancy way to say this is that we have a single natural
transformation

µ :

∫ c:C
P(−, c)× P(c ,=)→ P(−,=)



Promonads

• Finally, we need a couple of laws to hold:

◦ Composition should be associative
◦ Lifting and composing should agree with acting

P(−, c)× C(c ,=) P(−, c)× P(c ,=)

P(−,=)

P(−,c)×ηc

◁c
µc

• We get a category ProMnd(C) whose objects are promonads
on C and morphisms are natural transformations which
respect the composition and lifting



Promonads

• Finally, we need a couple of laws to hold:

◦ Composition should be associative
◦ Lifting and composing should agree with acting

P(−, c)× C(c ,=) P(−, c)× P(c ,=)

P(−,=)

P(−,c)×ηc

◁c
µc

• We get a category ProMnd(C) whose objects are promonads
on C and morphisms are natural transformations which
respect the composition and lifting



Promonads

• Finally, we need a couple of laws to hold:

◦ Composition should be associative

◦ Lifting and composing should agree with acting

P(−, c)× C(c ,=) P(−, c)× P(c ,=)

P(−,=)

P(−,c)×ηc

◁c
µc

• We get a category ProMnd(C) whose objects are promonads
on C and morphisms are natural transformations which
respect the composition and lifting



Promonads

• Finally, we need a couple of laws to hold:

◦ Composition should be associative
◦ Lifting and composing should agree with acting

P(−, c)× C(c ,=) P(−, c)× P(c ,=)

P(−,=)

P(−,c)×ηc

◁c
µc

• We get a category ProMnd(C) whose objects are promonads
on C and morphisms are natural transformations which
respect the composition and lifting



Promonads

• Finally, we need a couple of laws to hold:

◦ Composition should be associative
◦ Lifting and composing should agree with acting

P(−, c)× C(c ,=) P(−, c)× P(c ,=)

P(−,=)

P(−,c)×ηc

◁c
µc

• We get a category ProMnd(C) whose objects are promonads
on C and morphisms are natural transformations which
respect the composition and lifting



Promonads

• Finally, we need a couple of laws to hold:

◦ Composition should be associative
◦ Lifting and composing should agree with acting

P(−, c)× C(c ,=) P(−, c)× P(c ,=)

P(−,=)

P(−,c)×ηc

◁c
µc

• We get a category ProMnd(C) whose objects are promonads
on C and morphisms are natural transformations which
respect the composition and lifting



Promonads

• What’s this bought us?

• We certainly get a functor:

ProMnd(C)→ (C/Cat)ioo

• In fact, we get an equivalence:

ProMnd(C) ≃ (C/Cat)ioo



Promonads

• What’s this bought us?

• We certainly get a functor:

ProMnd(C)→ (C/Cat)ioo

• In fact, we get an equivalence:

ProMnd(C) ≃ (C/Cat)ioo



Promonads

• What’s this bought us?

• We certainly get a functor:

ProMnd(C)→ (C/Cat)ioo

• In fact, we get an equivalence:

ProMnd(C) ≃ (C/Cat)ioo



Promonads

• What’s this bought us?

• We certainly get a functor:

ProMnd(C)→ (C/Cat)ioo

• In fact, we get an equivalence:

ProMnd(C) ≃ (C/Cat)ioo



Cartesian promonads

• You may have spotted, we’ve got the following:

Law = (Fop/Cat)ioo,× ↪→ (Fop/Cat)ioo ≃ ProMnd(Fop)

• Can we restrict the right-hand side to get an equivalence?



Cartesian promonads

• You may have spotted, we’ve got the following:

Law = (Fop/Cat)ioo,× ↪→ (Fop/Cat)ioo ≃ ProMnd(Fop)

• Can we restrict the right-hand side to get an equivalence?



Cartesian promonads

• You may have spotted, we’ve got the following:

Law = (Fop/Cat)ioo,× ↪→ (Fop/Cat)ioo ≃ ProMnd(Fop)

• Can we restrict the right-hand side to get an equivalence?



Cartesian promonads

• We only want to consider promonads which induce cartesian
functors

• Consider (P : F× Fop → Set, µ, η) a promonad on Fop

• Because the induced functor is identity-on-objects, it will
strictly preserve products iff our dream maps still validate the
universal properties

• In other words,

P(−, 0) ∼= ⊤
P(−, n +m) ∼= P(−, n)× P(−,m)

naturally in m and n



Cartesian promonads

• We only want to consider promonads which induce cartesian
functors

• Consider (P : F× Fop → Set, µ, η) a promonad on Fop

• Because the induced functor is identity-on-objects, it will
strictly preserve products iff our dream maps still validate the
universal properties

• In other words,

P(−, 0) ∼= ⊤
P(−, n +m) ∼= P(−, n)× P(−,m)

naturally in m and n



Cartesian promonads

• We only want to consider promonads which induce cartesian
functors

• Consider (P : F× Fop → Set, µ, η) a promonad on Fop

• Because the induced functor is identity-on-objects, it will
strictly preserve products iff our dream maps still validate the
universal properties

• In other words,

P(−, 0) ∼= ⊤
P(−, n +m) ∼= P(−, n)× P(−,m)

naturally in m and n



Cartesian promonads

• We only want to consider promonads which induce cartesian
functors

• Consider (P : F× Fop → Set, µ, η) a promonad on Fop

• Because the induced functor is identity-on-objects, it will
strictly preserve products iff our dream maps still validate the
universal properties

• In other words,

P(−, 0) ∼= ⊤
P(−, n +m) ∼= P(−, n)× P(−,m)

naturally in m and n



Cartesian promonads

• We only want to consider promonads which induce cartesian
functors

• Consider (P : F× Fop → Set, µ, η) a promonad on Fop

• Because the induced functor is identity-on-objects, it will
strictly preserve products iff our dream maps still validate the
universal properties

• In other words,

P(−, 0) ∼= ⊤
P(−, n +m) ∼= P(−, n)× P(−,m)

naturally in m and n



Cartesian promonads

P(−, 0) ∼= ⊤
P(−, n +m) ∼= P(−, n)× P(−,m)

• Key point: this is the same as asking that the curried functor

P : F→ [Fop,Set]

lands in cartesian functors

• We want cartesian profunctors:

P : F→ [Fop,Set]×



Cartesian promonads

P(−, 0) ∼= ⊤
P(−, n +m) ∼= P(−, n)× P(−,m)

• Key point: this is the same as asking that the curried functor

P : F→ [Fop, Set]

lands in cartesian functors

• We want cartesian profunctors:

P : F→ [Fop,Set]×



Cartesian promonads

P(−, 0) ∼= ⊤
P(−, n +m) ∼= P(−, n)× P(−,m)

• Key point: this is the same as asking that the curried functor

P : F→ [Fop, Set]

lands in cartesian functors

• We want cartesian profunctors:

P : F→ [Fop,Set]×



The first equivalence

Law ≃ ProMnd×(F
op)



The first equivalence

Law ≃ ProMnd×(F
op)



Part II



Monads

• A monad is a monoid in the category of endofunctors on a
category C



Monads

• A monad is a monoid in the category of endofunctors on a
category C



Monads

• A monad is a monoid in the category of endofunctors on a
category C



Monads

• A monad is a lax 2-functor 1→ Cat



Monads

• A monad is a lax 2-functor 1→ Cat



Monads

• A monad is a lax 2-functor 1→ Cat



Monads

• Monads are a technical tool for describing algebraic structures
internal to general categories

• Rather than take a syntactic approach, monads are
fundamentally semantically motivated

• The monad-theory correspondence for Set essentially says that
the semantic approach and the syntactic approach are secretly
the same

• Mumble mumble technicalities...



Monads

• Monads are a technical tool for describing algebraic structures
internal to general categories

• Rather than take a syntactic approach, monads are
fundamentally semantically motivated

• The monad-theory correspondence for Set essentially says that
the semantic approach and the syntactic approach are secretly
the same

• Mumble mumble technicalities...



Monads

• Monads are a technical tool for describing algebraic structures
internal to general categories

• Rather than take a syntactic approach, monads are
fundamentally semantically motivated

• The monad-theory correspondence for Set essentially says that
the semantic approach and the syntactic approach are secretly
the same

• Mumble mumble technicalities...



Monads

• Monads are a technical tool for describing algebraic structures
internal to general categories

• Rather than take a syntactic approach, monads are
fundamentally semantically motivated

• The monad-theory correspondence for Set essentially says that
the semantic approach and the syntactic approach are secretly
the same

• Mumble mumble technicalities...



Monads

• Monads are a technical tool for describing algebraic structures
internal to general categories

• Rather than take a syntactic approach, monads are
fundamentally semantically motivated

• The monad-theory correspondence for Set essentially says that
the semantic approach and the syntactic approach are secretly
the same

• Mumble mumble technicalities...



Monads

• Fundamental observation: an algebra is an object equipped
with some operations we can somehow evaluate

• Take an object x ∈ C, what does it mean to evaluate in x?

• Choose another object Tx ∈ C of ‘computations’ and a map

a : Tx → x



Monads

• Fundamental observation: an algebra is an object equipped
with some operations we can somehow evaluate

• Take an object x ∈ C, what does it mean to evaluate in x?

• Choose another object Tx ∈ C of ‘computations’ and a map

a : Tx → x



Monads

• Fundamental observation: an algebra is an object equipped
with some operations we can somehow evaluate

• Take an object x ∈ C, what does it mean to evaluate in x?

• Choose another object Tx ∈ C of ‘computations’ and a map

a : Tx → x



Monads

• Fundamental observation: an algebra is an object equipped
with some operations we can somehow evaluate

• Take an object x ∈ C, what does it mean to evaluate in x?

• Choose another object Tx ∈ C of ‘computations’ and a map

a : Tx → x



Monads

• How do we make sure we’ve chosen a sensible notion of
computation?

• First, we make T : C → C an endofunctor:

◦ The notion of computation should be independent of the
specific x I’ve chosen

◦ Functoriality says that T can’t ‘see’ x



Monads

• How do we make sure we’ve chosen a sensible notion of
computation?

• First, we make T : C → C an endofunctor:

◦ The notion of computation should be independent of the
specific x I’ve chosen

◦ Functoriality says that T can’t ‘see’ x



Monads

• How do we make sure we’ve chosen a sensible notion of
computation?

• First, we make T : C → C an endofunctor:

◦ The notion of computation should be independent of the
specific x I’ve chosen

◦ Functoriality says that T can’t ‘see’ x



Monads

• How do we make sure we’ve chosen a sensible notion of
computation?

• First, we make T : C → C an endofunctor:

◦ The notion of computation should be independent of the
specific x I’ve chosen

◦ Functoriality says that T can’t ‘see’ x



Monads

• How do we make sure we’ve chosen a sensible notion of
computation?

• First, we make T : C → C an endofunctor:

◦ The notion of computation should be independent of the
specific x I’ve chosen

◦ Functoriality says that T can’t ‘see’ x



Monads

• If we’ve already got a (generalised) element of x , we should
have a ‘do nothing’ computation:

ηx : x → Tx

• Similarly, if I have a computation that computes a
computation, this should reduce to a single computation that
works out what it needs to do and does it:

µx : TTx → Tx

• These should be natural (again, we shouldn’t look at x):

η : 1C → T µ : TT → T



Monads

• If we’ve already got a (generalised) element of x , we should
have a ‘do nothing’ computation:

ηx : x → Tx

• Similarly, if I have a computation that computes a
computation, this should reduce to a single computation that
works out what it needs to do and does it:

µx : TTx → Tx

• These should be natural (again, we shouldn’t look at x):

η : 1C → T µ : TT → T



Monads

• If we’ve already got a (generalised) element of x , we should
have a ‘do nothing’ computation:

ηx : x → Tx

• Similarly, if I have a computation that computes a
computation, this should reduce to a single computation that
works out what it needs to do and does it:

µx : TTx → Tx

• These should be natural (again, we shouldn’t look at x):

η : 1C → T µ : TT → T



Monads

• If we’ve already got a (generalised) element of x , we should
have a ‘do nothing’ computation:

ηx : x → Tx

• Similarly, if I have a computation that computes a
computation, this should reduce to a single computation that
works out what it needs to do and does it:

µx : TTx → Tx

• These should be natural (again, we shouldn’t look at x):

η : 1C → T µ : TT → T



Monads

• The monad laws express three more sensible properties of
computation when you think in these terms!

Tx TTx Tx

Tx

ηTx

1Tx
µx

T (ηx )

1Tx

TTTx TTx

TTx Tx

T (µx )

µTx µx

µx

• We get a category Mnd(C) whose objects are monads on C
and whose morphisms are natural transformations preserving
all the structure



Monads

• The monad laws express three more sensible properties of
computation when you think in these terms!

Tx TTx Tx

Tx

ηTx

1Tx
µx

T (ηx )

1Tx

TTTx TTx

TTx Tx

T (µx )

µTx µx

µx

• We get a category Mnd(C) whose objects are monads on C
and whose morphisms are natural transformations preserving
all the structure



Monads

• The monad laws express three more sensible properties of
computation when you think in these terms!

Tx TTx Tx

Tx

ηTx

1Tx
µx

T (ηx )

1Tx

TTTx TTx

TTx Tx

T (µx )

µTx µx

µx

• We get a category Mnd(C) whose objects are monads on C
and whose morphisms are natural transformations preserving
all the structure



Monads

• The monad laws express three more sensible properties of
computation when you think in these terms!

Tx TTx Tx

Tx

ηTx

1Tx
µx

T (ηx )

1Tx

TTTx TTx

TTx Tx

T (µx )

µTx µx

µx

• We get a category Mnd(C) whose objects are monads on C
and whose morphisms are natural transformations preserving
all the structure



Monads

• The monad laws express three more sensible properties of
computation when you think in these terms!

Tx TTx Tx

Tx

ηTx

1Tx
µx

T (ηx )

1Tx

TTTx TTx

TTx Tx

T (µx )

µTx µx

µx

• We get a category Mnd(C) whose objects are monads on C
and whose morphisms are natural transformations preserving
all the structure



Finitary monads

• Disclaimer: this part is quite technical, so I’m going to brush
over a lot of details, but hopefully the picture still comes out!



Finitary monads

• Disclaimer: this part is quite technical, so I’m going to brush
over a lot of details, but hopefully the picture still comes out!



Finitary monads

• We’re not always interested in notions of computation in the
most general sense

• Sometimes we want to ensure that our computations are
somehow ‘finitely describable’:

◦ If we have a monad T on Set, we might hope that a
computation c ∈ TX can be described using at most finitely
many elements of X

◦ For example, computations might be formal sums of at most
finitely many elements

• If we’re looking for a connection with universal algebra, this is
certainly a sensible restriction!



Finitary monads

• We’re not always interested in notions of computation in the
most general sense

• Sometimes we want to ensure that our computations are
somehow ‘finitely describable’:

◦ If we have a monad T on Set, we might hope that a
computation c ∈ TX can be described using at most finitely
many elements of X

◦ For example, computations might be formal sums of at most
finitely many elements

• If we’re looking for a connection with universal algebra, this is
certainly a sensible restriction!



Finitary monads

• We’re not always interested in notions of computation in the
most general sense

• Sometimes we want to ensure that our computations are
somehow ‘finitely describable’:

◦ If we have a monad T on Set, we might hope that a
computation c ∈ TX can be described using at most finitely
many elements of X

◦ For example, computations might be formal sums of at most
finitely many elements

• If we’re looking for a connection with universal algebra, this is
certainly a sensible restriction!



Finitary monads

• We’re not always interested in notions of computation in the
most general sense

• Sometimes we want to ensure that our computations are
somehow ‘finitely describable’:

◦ If we have a monad T on Set, we might hope that a
computation c ∈ TX can be described using at most finitely
many elements of X

◦ For example, computations might be formal sums of at most
finitely many elements

• If we’re looking for a connection with universal algebra, this is
certainly a sensible restriction!



Finitary monads

• We’re not always interested in notions of computation in the
most general sense

• Sometimes we want to ensure that our computations are
somehow ‘finitely describable’:

◦ If we have a monad T on Set, we might hope that a
computation c ∈ TX can be described using at most finitely
many elements of X

◦ For example, computations might be formal sums of at most
finitely many elements

• If we’re looking for a connection with universal algebra, this is
certainly a sensible restriction!



Finitary monads

• We’re not always interested in notions of computation in the
most general sense

• Sometimes we want to ensure that our computations are
somehow ‘finitely describable’:

◦ If we have a monad T on Set, we might hope that a
computation c ∈ TX can be described using at most finitely
many elements of X

◦ For example, computations might be formal sums of at most
finitely many elements

• If we’re looking for a connection with universal algebra, this is
certainly a sensible restriction!



Finitary monads

• Category theory gives us some very technical, but very useful,
notions of finiteness in general categories

• As we’re only really interested in monads on Set today:

◦ A monad T on Set is finitary iff for every set X and element
c ∈ TX , there is a finite subset i : X0 ↣ X through which c
factors:

{⋆} TX

TX0

c

c0 Ti

• We’ll call the full subcategory of Mnd(Set) spanned by
finitary monads Mndfin(Set)

• It only really matters what T does to finite sets!



Relative monads

• A monad relative to a functor J : C → E is a monoid in the
skew-monoidal category ([C, E ], ◦J , J)



Relative monads

• A monad relative to a functor J : C → E is a monoid in the
skew-monoidal category ([C, E ], ◦J , J)



Relative monads

• A monad relative to a functor J : C → E is a monoid in the
skew-monoidal category ([C, E ], ◦J , J)



Relative monads

• Relative monads are a technical tool for describing notions of
computation constrained to some particular diagram in a
category

• The computations might form objects in a much larger
category, but are only described for a (potentially) smaller
system of objects



Relative monads

• Relative monads are a technical tool for describing notions of
computation constrained to some particular diagram in a
category

• The computations might form objects in a much larger
category, but are only described for a (potentially) smaller
system of objects



Relative monads

• Relative monads are a technical tool for describing notions of
computation constrained to some particular diagram in a
category

• The computations might form objects in a much larger
category, but are only described for a (potentially) smaller
system of objects



Relative monads

• What does this look like?

• First, pick your system of objects J : C → E
• For each object x ∈ C, define the computations Tx ∈ E
• Again, we want ‘do nothing’ computations

ηx : Jx → Tx



Relative monads

• What does this look like?

• First, pick your system of objects J : C → E
• For each object x ∈ C, define the computations Tx ∈ E
• Again, we want ‘do nothing’ computations

ηx : Jx → Tx



Relative monads

• What does this look like?

• First, pick your system of objects J : C → E

• For each object x ∈ C, define the computations Tx ∈ E
• Again, we want ‘do nothing’ computations

ηx : Jx → Tx



Relative monads

• What does this look like?

• First, pick your system of objects J : C → E
• For each object x ∈ C, define the computations Tx ∈ E

• Again, we want ‘do nothing’ computations

ηx : Jx → Tx



Relative monads

• What does this look like?

• First, pick your system of objects J : C → E
• For each object x ∈ C, define the computations Tx ∈ E
• Again, we want ‘do nothing’ computations

ηx : Jx → Tx



Relative monads

• This time, we can’t necessarily build computations that
compute computations

• However, we can introduce a mechanism for sequencing
computations

(−)† : E(Jx ,Ty)→ E(Tx ,Ty)

◦ I find it helps to think of maps Jx → Ty as computations with
a ‘parameter’



Relative monads

• This time, we can’t necessarily build computations that
compute computations

• However, we can introduce a mechanism for sequencing
computations

(−)† : E(Jx ,Ty)→ E(Tx ,Ty)

◦ I find it helps to think of maps Jx → Ty as computations with
a ‘parameter’



Relative monads

• This time, we can’t necessarily build computations that
compute computations

• However, we can introduce a mechanism for sequencing
computations

(−)† : E(Jx ,Ty)→ E(Tx ,Ty)

◦ I find it helps to think of maps Jx → Ty as computations with
a ‘parameter’



Relative monads

• This time, we can’t necessarily build computations that
compute computations

• However, we can introduce a mechanism for sequencing
computations

(−)† : E(Jx ,Ty)→ E(Tx ,Ty)

◦ I find it helps to think of maps Jx → Ty as computations with
a ‘parameter’



Relative monads

• Similar to monads, we have some sensible properties we
expect to hold

(ηx)
† = 1Tx

Tx

Jx Ty

f †ηx

f



Relative monads

• Similar to monads, we have some sensible properties we
expect to hold

(ηx)
† = 1Tx

Tx

Jx Ty

f †ηx

f



Relative monads

• Similar to monads, we have some sensible properties we
expect to hold

(ηx)
† = 1Tx

Tx

Jx Ty

f †ηx

f



Relative monads

• Similar to monads, we have some sensible properties we
expect to hold

(ηx)
† = 1Tx

Tx

Jx Ty

f †ηx

f



Relative monads

Jx Ty Tz

Tx Tz

Ty

f g†

(g†f )†

f † g†

• These laws automatically guarantee functoriality of T and
naturality of η and (−)†!
• For each J : C → E , we get a category RMnd(J) of monads

relative to J and natural transformations preserving the
structure



Relative monads

Jx Ty Tz

Tx Tz

Ty

f g†

(g†f )†

f † g†

• These laws automatically guarantee functoriality of T and
naturality of η and (−)†!
• For each J : C → E , we get a category RMnd(J) of monads

relative to J and natural transformations preserving the
structure



Relative monads

Jx Ty Tz

Tx Tz

Ty

f g†

(g†f )†

f † g†

• These laws automatically guarantee functoriality of T and
naturality of η and (−)†!

• For each J : C → E , we get a category RMnd(J) of monads
relative to J and natural transformations preserving the
structure



Relative monads

Jx Ty Tz

Tx Tz

Ty

f g†

(g†f )†

f † g†

• These laws automatically guarantee functoriality of T and
naturality of η and (−)†!
• For each J : C → E , we get a category RMnd(J) of monads

relative to J and natural transformations preserving the
structure



The second equivalence

RMnd(F ↪→ Set) ≃ Mndfin(Set)



The second equivalence

RMnd(F ↪→ Set) ≃ Mndfin(Set)



The picture

Set

F Set

LanJTJ

T



The picture

Set

F Set

LanJTJ

T



Part III



The third equivalence

ProMnd×(F
op) ≃ RMnd(F ↪→ Set)



The third equivalence

ProMnd×(F
op) ≃ RMnd(F ↪→ Set)



What we’ve got

• P : F→ [Fop,Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set

• η : J → T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

• ...



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set

• η : J → T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

• ...



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set

• η : J → T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

• ...



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set

• η : J → T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

• ...



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set

• η : J → T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

• ...



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set

• η : J → T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

• ...



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set

• η : J → T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

• ...



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set

• η : J → T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

• ...



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set

• η : J → T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

• ...



Key ingredient

[Fop,Set]× ≃ Set



Key ingredient

[Fop, Set]× ≃ Set



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set≃ [Fop,Set]×

• η : J → T η : Fop(−,=)→ T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

T (m, n) ∼= [Fop,Set]×(F
op(n,−),Tm)→ [Fop,Set]×(Tn,Tm)



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set

≃ [Fop,Set]×

• η : J → T η : Fop(−,=)→ T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

T (m, n) ∼= [Fop,Set]×(F
op(n,−),Tm)→ [Fop,Set]×(Tn,Tm)



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set≃ [Fop,Set]×

• η : J → T η : Fop(−,=)→ T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

T (m, n) ∼= [Fop,Set]×(F
op(n,−),Tm)→ [Fop,Set]×(Tn,Tm)



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set≃ [Fop,Set]×

• η : J → T

η : Fop(−,=)→ T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

T (m, n) ∼= [Fop,Set]×(F
op(n,−),Tm)→ [Fop,Set]×(Tn,Tm)



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set≃ [Fop,Set]×

• η : J → T η : Fop(−,=)→ T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

T (m, n) ∼= [Fop,Set]×(F
op(n,−),Tm)→ [Fop,Set]×(Tn,Tm)



What we’ve got

• P : F→ [Fop, Set]×

• η : Fop(−,=)→ P

• µ : ∫ c:C P(−, c)× P(c ,=)→ P

• ...

• T : F→ Set≃ [Fop,Set]×

• η : J → T η : Fop(−,=)→ T

• (−)† : Set(J(−),T (=))→ Set(T (−),T (=))

T (m, n) ∼= [Fop,Set]×(F
op(n,−),Tm)→ [Fop,Set]×(Tn,Tm)



Summary

• We’ve covered a lot of ground:

◦ Lawvere theories
◦ Finitary monads
◦ Relative monads
◦ Promonads
◦ Ways these all link up!

• Hopefully you’ve got some intuitions for some of these and
can go away and look at the details



Summary

• We’ve covered a lot of ground:

◦ Lawvere theories
◦ Finitary monads
◦ Relative monads
◦ Promonads
◦ Ways these all link up!

• Hopefully you’ve got some intuitions for some of these and
can go away and look at the details



Summary

• We’ve covered a lot of ground:

◦ Lawvere theories

◦ Finitary monads
◦ Relative monads
◦ Promonads
◦ Ways these all link up!

• Hopefully you’ve got some intuitions for some of these and
can go away and look at the details



Summary

• We’ve covered a lot of ground:

◦ Lawvere theories
◦ Finitary monads

◦ Relative monads
◦ Promonads
◦ Ways these all link up!

• Hopefully you’ve got some intuitions for some of these and
can go away and look at the details



Summary

• We’ve covered a lot of ground:

◦ Lawvere theories
◦ Finitary monads
◦ Relative monads

◦ Promonads
◦ Ways these all link up!

• Hopefully you’ve got some intuitions for some of these and
can go away and look at the details



Summary

• We’ve covered a lot of ground:

◦ Lawvere theories
◦ Finitary monads
◦ Relative monads
◦ Promonads

◦ Ways these all link up!

• Hopefully you’ve got some intuitions for some of these and
can go away and look at the details



Summary

• We’ve covered a lot of ground:

◦ Lawvere theories
◦ Finitary monads
◦ Relative monads
◦ Promonads
◦ Ways these all link up!

• Hopefully you’ve got some intuitions for some of these and
can go away and look at the details



Summary

• We’ve covered a lot of ground:

◦ Lawvere theories
◦ Finitary monads
◦ Relative monads
◦ Promonads
◦ Ways these all link up!

• Hopefully you’ve got some intuitions for some of these and
can go away and look at the details



References

Thorsten Altenkirch, James Chapman, and Tarmo Uustalu.
Monads need not be endofunctors.
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 6014 LNCS:297–311, 2010.

Nathanael Arkor.
Monadic and higher-order structure.
2022.

F. William Lawvere.
Functorial semantics of algebraic theories and some algebraic
problems in the context of functorial semantics of algebraic
theories, 1963.


	Part I
	Lawvere theories
	Cartesian promonads
	LawProMnd(Fop)

	Part II
	Finitary monads
	Relative monads
	RMnd(F-3muSet) Mndfin(Set)

	Part III
	ProMnd(Fop) RMnd(F-3muSet)


