
Concurrent monads for shared state

Exequiel Rivas, Tallinn Univ. of Techn.
Tarmo Uustalu, Reykjavik Univ. / Tallinn Univ. of Techn.

MSFP, Tallinn, 8 July 2024

Concurrency and effects

Is concurrency an effect?

I’d say no.

Parallel composition is a high-level control structure, analogous and
comparable to sequential composition.

Monads axiomatize sequential composition of effectful computations

but they do NOT axiomatize parallel composition.

Kleene monads axiomatize sequential composition together with
nondeterminism and finite iteration.

Could we do the same for parallel composition?

Spoiler: Yes, with concurrent monads by Rivas, Jaskelioff 2019;
Paquet, Saville 2024

Concurrent monoids

(Gischer 1984/88; Hoare et al. 2009/11)

A concurrent monoid is an ordered set with two ordered monoid
structures agreeing in a certain way.

Explicitly, it is an ordered set (M,≤) with

id ∈ M, (;) : M ×M → M with ; monotone, unital, associative,
jd ∈ M, ‖ : M ×M → M with ‖ monotone, unital, associative

satisfying inequational interchange

id ≤ jd
jd ; jd ≤ jd
id ≤ id ‖ id

(k ‖ `) ; (m ‖ n) ≤ (k ; m) ‖ (` ; n)

If the 1st inequation holds as an equality, we say the concurrent
monoid is normal.

Concurrent monoids ctd

The 4th inequation implies the 1st.

The 1st inequation implies the converses of the 2nd and 3rd
inequations.

If ≤ is =, a concurrent monoid reduces to a duoid.

By Eckmann–Hilton, a normal duoid is the same as a commutative
monoid.

Remark: Classically, one requires commutativity of ‖ and normality.
We don’t.

Let’s type this: Concurrent categories, take 1

A concurrent category is an ordered “strict monoidal like” category.

Explicitly, it is a set |C| and, for all X ,Y ∈ |C|, an ordered set
(C(X ,Y),≤) with

id ∈ C(X ,X), (;) : C(X ,Y)× C(Y ,Z)→ C(X ,Z)
with (;) monotone, unital, associative,

(= an ordered category)

I ∈ |C|, ⊗ : |C| × |C| → |C|
with ⊗ strictly unital, associative,
jd ∈ C(I, I), ‖ : C(X ,Z)× C(Y ,W)→ C(X ⊗ Y ,Z ⊗W)
with ‖ monotone, unital, associative

satisfying
id ≤ jd

jd ; jd ≤ jd
id ≤ id ‖ id

(k ‖ `) ; (m ‖ n) ≤ (k ; m) ‖ (` ; n)

(= a strict monoidal like structure, but I : 1→ C and
⊗ : C× C→ C are lax functors,
i.e., jd and ‖ preserve identity and composition laxly)

Concurrent categories, properly

We don’t want strict monoidal(-like)ness, but non-strict, however
with the unitality and associativity laws “central”.

We assume given an ordered monoidal category
C = (C,≤, id, (;), I,⊗).

A concurrent category with base C is given by an ordered
“(non-strict) ‘monoidal-like” category K with the same objects as C
and an identity-on-objects ordered “strict monoidal like” functor J.

Concurrent categories, properly

Explicitly, K consists of a set |K| = |C| and, for all X ,Y ∈ |K|, an
ordered set (K(X ,Y),≤K) with

idK ∈ K(X ,X), (;K) : K(X ,Y)×K(Y ,Z)→ K(X ,Z)
with (;K) monotone, unital, associative,

(= an ordered category)

IK = I ∈ |K|, ⊗K = ⊗ : |K| × |K| → |K|
with ⊗K unital, associative (in K!) via Jλ, Jρ, Jα
jd ∈ K(I, I), ‖ : K(X ,Z)×K(Y ,W)→ K(X ⊗ Y ,Z ⊗W)
with ‖ monotone and unital, associative up to Jλ, Jρ, Jα

satisfying
idK ≤K jd

jd ; jd≤K jd
idK ≤K idK ‖ idK

(k ‖ `) ;K (m ‖ n)≤K (k ;K m) ‖ (` ;K n)

(= a strict monoidal like structure, but jd and ‖ preserve identity
and composition laxly)

J is an identity-on-objects ordered functor that is strict monoidal
like, but preserves map operations I and ⊗ oplaxly in that JI≤K jd
and J(f ⊗ g)≤K Jf ‖ Jg .

Toward concurrent monads

For an ordered mon. cat. C, what data and (inequations) we need
equip an ordered functor T : C→ C with

to get that K with
|K| = |C|, K(X ,Y) = C(X ,TY), k ≤K ` iff k ≤ `
is a concurrent category?

We can proceed from these monotone bijections between homposets.

C(X ,TY)× C(Y ,TZ)→ C(X ,TZ) nat. in X in Poset

C(Y ,TZ)→ C(TY ,TZ) in Poset

C(Y ,TZ)→ C(TY ,TZ) nat. in Y in Poset

T (TZ)→ TZ in C

C(X ,TY)× C(U,TV)→ C(X ⊗ U,T (Y ⊗ V)) nat. in X ,U in Poset

TY ⊗ TV → T (Y ⊗ V) in C

Concurrent monads

(Rivas, Jaskelioff 2019; Paquet, Saville 2024)

A concurrent monad on an ordered monoidal category (C,≤, I,⊗) is
an ordered functor that carries both an ordered monad and an
ordered lax monoidal functor structure, agreeing in a certain way.

Explicitly, it consists of an ordered functor T : C→ C with
ηX : X → TX , µX : T (TX)→ TX natural in X ,
ψ0 : I→ T I, ψX ,Y : TX ⊗ TY → T (X ⊗ Y) natural in X , Y ,

satisfying the equations of a monad and a lax monoidal functor and
inequational interchange.

For example, the 4th inequation takes the form

T (TX)⊗ T (TY)

µX⊗µY

��

ψTX,TY // T (TX ⊗ TY)
TψX,Y // T (T (X ⊗ Y))

µX⊗Y

��
≥

TX ⊗ TY
ψX,Y // T (X ⊗ Y)

If ≤ is =, this reduces to a lax monoidal (aka. commutative) monad.

Kleisli for a concurrent monad

A concurrent monad T on an ordered monoidal category C induces
a concurrent category (K, J) via this Kleisli construction:

|Kl(T)| = |C|,
Kl(T)(X ,Y) = C(X ,TY),
k ≤K ` in Kl(T)(X ,Y) iff k ≤ ` in C(X ,TY),

idK
X = ηX ,

k ;K ` = k ; T ` ; µZ for k ∈ Kl(T)(X ,Y), ` ∈ Kl(T)(Y ,Z),
jd = ψ0,
k ‖ ` = (k ⊗ `) ; ψY ,V for k ∈ Kl(T)(X ,Y), ` ∈ Kl(T)(U,V),

JX = X
Jf = f ; ηY for f ∈ C(X ,Y).

J has a right ordered adjoint K :

KX = TX ,
Kk = Tk;µY for k ∈ Kl(T)(X ,Y)

K is “lax monoidal like”, but preserves jd, ‖ oplaxly.

Kleisli for a concurrent monad ctd.

Conversely,
if J in a concurrent category (K, J) has a right adjoint with the
above properties,
then the ordered functor T = K · J on C carries the structure of a
concurrent monad with (K , J) its Kleisli construction.

Example: Writer

We consider examples on the ordered Cartesian monoidal closed
category (Poset,≤, 1,×,⇒)
which has as objects ordered sets, as maps monotone functions,
f ≤ g for f , g : X → Y iff fx ≤Y gx for all x .

The writer/reader/state monads from FP are concurrent monads for
parameters with suitable structure.

TX = M × X
for (M, o,+, e, ·) a concurrent monoid

ηX x = (o, x)
µX (m, (m′, x)) = (m + m′, x)
ψ0 ? = (e, ?)
ψX ,Y ((m, x), (m′, y)) = (m ·m′, (x , y))

This concurrent monad is normal (η1 = ψ0) if the concurrent
monoid is normal (o = e).

Reader

TX = S ⇒ X
for S any ordered set (it is ok if ≤S is =)

NB! S ⇒ X is the ordered set of monotone functions from S to X
(if ≤S is =, this all functions are monotone).

ηX x = λ . x
µX f = λs. f s s
ψ0 ? = λ . ?
ψX ,Y (f , g) = λs. (f s, g s)

The interchange inequations hold as equalities, so this concurrent
monad is a commutative ordered monad.

State

TX = S ⇒ S × X
for (S ,>,∧) a lower semilattice
(so ≤S cannot be = unless S is a singleton)

Recall that S ⇒ S × X consists of monotone functions only.

ηX x = λs. (s, x)
µX f = λs. let (s ′, g) = f s in gs ′

ψ0 ? = λ . (>, ?)
ψX ,Y (f , g) = λs. let ((s0, x), (s1, y)) = (f s, g s) in (s0 ∧ s1, (x , y))

This concurrent monad is not normal (η1 6= ψ0).

Every computation is one atomic step.

In parallel computation, the two atomic steps happen “truly
concurrently”, the competing writes are reconciled by ∧.

Resumptions for interleaving shared state concurrency

The idea of resumptions: a computation consists of small steps
(organized into a tree).

TX = µZ . X︸︷︷︸
ret

+︸︷︷︸
or

(S ⇒︸ ︷︷ ︸
grab

List︸︷︷︸
branch

(S ×︸︷︷︸
yield

Z︸︷︷︸
repeat

))

for S discretely ordered (for simplicity)

≤TX induced by ≤ListY induced by order-preserving inclusion
between lists

η x = ret x
µ (ret r) = r
µ (grab k) = grab (λs. [(s ′, µX r | (s ′, r)← k s])

ψ0 ? = ret ?
ψ (ret x , ret y) = ret (x , y)
ψ (ret x , grab `) = grab (λs. [(s ′, ψ (ret x , r)) | (s ′, r)← ` s])
ψ (grab k, ret y) = grab (λs. [(s ′, ψ (r , ret y)) | (s ′, r)← k s])
ψ (grab k, grab `) = grab (λs. [(s ′, ψ (r , grab `)) | (s ′, r)← k s]

++[(s ′, ψ (grab k , r)) | (s ′, r)← ` s])

Although we use List rather than Mf or Pf , asssociativity of ψ and
the 4th interchange inequation hold.

Resumptions ctd.

T supports algebraic operations for reading and writing

get : (S ⇒ X)→ TX
get f = grab (λs. [(s, f s)])

put : S × X → TX
put (s ′, x) = grab (λ . [(s ′, x)])

and a high-level control operation for atomizing computations
(concatenate all small steps into one single one)

stitch : TX → TX
stitch r = grab (λs. stitch′(s, r)) where
stitch′ : S × TX → List (S × TX)
stitch′ (s, ret x) = [(s, ret x)]
stitch′ (s, grab k) = concat (List stitch′ (k s))

Bags of traces for interleaving shared state concurrency

TX = Mf︸︷︷︸
BRANCH

(T ′X) where T ′X = (µZ . X︸︷︷︸
ret

+︸︷︷︸
or

S ×︸︷︷︸
grab

S ×︸︷︷︸
yield

Z︸︷︷︸
repeat

)

≤TX induced by ≤MfY induced by multiset inclusion

η x = {ret x}
µ ts =

⋃
(Mf µ

′ ts) where
µ′ : T ′(TX)→ TX
µ′ (ret ts) = ts
µ′ (grab s s ′ t) = T ′ (grab s s ′) (µ′ t)

ψ0 ? = {ret ?}
ψ (ts0, ts1) =

⋃
{t0 � t1 | t0 ← ts0, t1 ← ts1} where

� : T ′X × T ′Y → T (X ,Y)
ret x � ret y = {ret (x , y)}
ret x � grab s s ′ t = T ′ (grab s s ′) (ret x � t)
grab s s ′ t � ret y = T ′ (grab s s ′) (t � ret y)
grab s0 s

′
0 t0 � grab s1 s

′
1 t1 = T ′ (grab s0 s

′
0) (t0 � grab s1 s

′
1 t1)

∪T ′ (grab s1 s ′1) (grab s0 s
′
0 t0 � t1)

get, put, stitch also definable, e.g.,
put (s ′, x) = {grab s s ′ (ret x) | s ∈ S}

Duoidal categories

Concurrent monoids are objects with structure of the ordered
category Poset.

To define what makes a concurrent monoid object in a general
ordered category D, this category has to be ordered duoidal.

An ordered duoidal category is an ordered category D with two
ordered monoidal structures (I ,�), (J,~) and maps

J → I
J → J � J
I ~ I → I

(F � G) ~ (H � K)→ (F ~ H)� (G ~ K) nat. in F , G , H, K

satisfying certain equations.

Concurrent monoid objects

A concurrent monoid object in an ordered duoidal cataegory is an
object M with two monoid structures (o, a) wrt. (I ,�) and (e,m)
wrt. (J,~) satisfying inequational interchange.

A (classical) concurrent monoid is a concurrent monoid object in the
ordered duoidal category (Poset, 1,×, 1,×).

Concurrent monads as concurrent monoids

If (C,≤, I,⊗) is an ordered monoidal category,

then ([C,C]a,≤, Id, ·, Jd, ?) is an ordered duoidal category.

Here (Jd, ?) is the Day convolution monoidal structure

JdZ = C(I,Z) • I

(F ? G)Z =
∫ X ,Y C(X ⊗ Y ,Z) • (FX ⊗ GY)

A (accessible) concurrent monad is the same as a concurrent monoid
object in this ordered duoidal category.

The carrier is T ∈ |[C,C]a| and the structure maps are

η : Id→ T , µ : T · T → T ,
e : Jd→ T , m : T ? T → T .

Conclusions and future work

Parallel composition is axiomatizable relatively smoothly for typed
effectful computation.

Ordered category theory streamlines the development. Ordered
duoidal categories are particularly important.

The resumption model can be captured easily and is flexible for
variations.

How to extend an ordered monad canonically to a concurrent
monad?

Concurrent monads for transactional memories, relaxed memories?

Axiomatization of atomization, of operations of cooperative
concurrency?

References

J. L. Gischer. The equational theory of posets. Theor. Comput. Sci.
1988.

C. A. R. Hoare, B. Möller, G. Struth, I. Wehrman. Concurrent
Kleene algebra and its foundations. J. Log. Algebraic Program.
2011.

E. Rivas, M. Jaskelioff. Merging monads. HAL 2019.

H. Paquet, P. Saville. Effectful semantics in bicategories: strong,
commutative and concurrent pseudomonads. LICS 2024.

C. Heunen, J. Sigal. Duoidally enriched Freyd categories. RELMICS
2023.

P. Cenciarelli, E. Moggi. A syntactic approach to modularity in
denotational semantics. CTCS ’93.

S. Goncharov, L. Schröder. A coinductive calculus for asynchronous
side-effecting. Inf. Comput. 2013.

Y. Dvir, O. Kammar, O. Lahav. An algebraic theory for shared-state
concurrency. APLAS 2022.

Y. Dvir, O. Kammar, O. Lahav. A denotational approach to
release/acquire concurrency. ESOP 2024.

