
All your base categories are belong to us
A syntactic model of presheaves in type theory

Pierre-Marie Pédrot

INRIA, Gallinette team

MSFP 2020
31st August 2020

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 1 / 54

It’s Time to CIC Ass

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 2 / 54

It’s Time to CIC Ass

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 2 / 54

It’s Time to CIC Ass

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 2 / 54

It’s Time to CIC Ass

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 2 / 54

It’s Time to CIC Ass

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 2 / 54

The Good Properties™

Consistency There is no proof of False.
Implementability Type-checking is decidable.
Canonicity Closed integers are indeed integers, i.e

` M : N implies M ≡ S . . . S O

Assuming we have a notion of reduction compatible with conversion:
Normalization Reduction is normalizing
Subject reduction Reduction is compatible with typing

Some of these properties are interdependent

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 3 / 54

The Good Properties™

Consistency There is no proof of False.
Implementability Type-checking is decidable.
Canonicity Closed integers are indeed integers, i.e

` M : N implies M ≡ S . . . S O

Assuming we have a notion of reduction compatible with conversion:
Normalization Reduction is normalizing
Subject reduction Reduction is compatible with typing

Some of these properties are interdependent

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 3 / 54

Extending Coq in Three Easy Steps

Our mission
To boldly extend the logical / computational expressivity of CIC

⇝ we need to design models for that.
⇝ and ensure they satisfy The Good Properties™.

Today we will focus on a specific family of models...

Presheaves!

Proof-relevant Kripke semantics / Intuitionistic Forcing
Bread and Butter of Model Construction
They Are Everywhere: Cubical, Modal, Guarded, NbE, ...

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 4 / 54

Extending Coq in Three Easy Steps

Our mission
To boldly extend the logical / computational expressivity of CIC

⇝ we need to design models for that.
⇝ and ensure they satisfy The Good Properties™.

Today we will focus on a specific family of models...

Presheaves!

Proof-relevant Kripke semantics / Intuitionistic Forcing
Bread and Butter of Model Construction
They Are Everywhere: Cubical, Modal, Guarded, NbE, ...

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 4 / 54

Extending Coq in Three Easy Steps

Our mission
To boldly extend the logical / computational expressivity of CIC

⇝ we need to design models for that.
⇝ and ensure they satisfy The Good Properties™.

Today we will focus on a specific family of models...

Presheaves!

Proof-relevant Kripke semantics / Intuitionistic Forcing
Bread and Butter of Model Construction
They Are Everywhere: Cubical, Modal, Guarded, NbE, ...

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 4 / 54

I Herd U Liek Murphims

Definition
Let P be a category. A presheaf over P is just a functor Pop → Set.

(In what follows we will fix the base category P once and for all.)

Theorem
Presheaves with nat. transformations as morphisms form a category Psh(P).

Actually Psh(P) is even a topos!

Bear with me, we will handwave through this in the next slides.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 5 / 54

I Herd U Liek Murphims

Definition
Let P be a category. A presheaf over P is just a functor Pop → Set.

(In what follows we will fix the base category P once and for all.)

Theorem
Presheaves with nat. transformations as morphisms form a category Psh(P).

Actually Psh(P) is even a topos!

Bear with me, we will handwave through this in the next slides.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 5 / 54

I Herd U Liek Murphims

Definition
Let P be a category. A presheaf over P is just a functor Pop → Set.

(In what follows we will fix the base category P once and for all.)

Theorem
Presheaves with nat. transformations as morphisms form a category Psh(P).

Actually Psh(P) is even a topos!

Bear with me, we will handwave through this in the next slides.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 5 / 54

I Herd U Liek Murphims

Definition
Let P be a category. A presheaf over P is just a functor Pop → Set.

(In what follows we will fix the base category P once and for all.)

Theorem
Presheaves with nat. transformations as morphisms form a category Psh(P).

Actually Psh(P) is even a topos!

Bear with me, we will handwave through this in the next slides.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 5 / 54

All Your Base Category Are Belong to Us

What is Psh(P)?

Objects: A presheaf (A, θA) is given by
A family of P-indexed sets Ap : Set
A family of “restriction morphisms” (a.k.a. monotonicity)

θA : Π{p, q ∈ P} (α ∈ P(q, p)). Ap → Aq

“θA α x lowers its argument x along α ∈ P(q, p)”

s.t. given x ∈ Ap, α ∈ P(q, p) and β ∈ P(r, q):

θA idp x ≡ x θA (β ◦ α) x ≡ θA β (θA α x)

“Lowering is compatible with the structure of P”

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 6 / 54

All Your Base Category Are Belong to Us

What is Psh(P)?

Objects: A presheaf (A, θA) is given by
A family of P-indexed sets Ap : Set
A family of “restriction morphisms” (a.k.a. monotonicity)

θA : Π{p, q ∈ P} (α ∈ P(q, p)). Ap → Aq

“θA α x lowers its argument x along α ∈ P(q, p)”

s.t. given x ∈ Ap, α ∈ P(q, p) and β ∈ P(r, q):

θA idp x ≡ x θA (β ◦ α) x ≡ θA β (θA α x)

“Lowering is compatible with the structure of P”

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 6 / 54

All Your Base Category Are Belong to Us

What is Psh(P)?

Objects: A presheaf (A, θA) is given by
A family of P-indexed sets Ap : Set
A family of “restriction morphisms” (a.k.a. monotonicity)

θA : Π{p, q ∈ P} (α ∈ P(q, p)). Ap → Aq

“θA α x lowers its argument x along α ∈ P(q, p)”

s.t. given x ∈ Ap, α ∈ P(q, p) and β ∈ P(r, q):

θA idp x ≡ x θA (β ◦ α) x ≡ θA β (θA α x)

“Lowering is compatible with the structure of P”

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 6 / 54

All Your Base Category Are Belong to Us

What is Psh(P)?

Objects: A presheaf (A, θA) is given by
A family of P-indexed sets Ap : Set
A family of “restriction morphisms” (a.k.a. monotonicity)

θA : Π{p, q ∈ P} (α ∈ P(q, p)). Ap → Aq

“θA α x lowers its argument x along α ∈ P(q, p)”

s.t. given x ∈ Ap, α ∈ P(q, p) and β ∈ P(r, q):

θA idp x ≡ x θA (β ◦ α) x ≡ θA β (θA α x)

“Lowering is compatible with the structure of P”

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 6 / 54

All Your Base Category Are Belong to Us

What is Psh(P)?

Objects: A presheaf (A, θA) is given by
A family of P-indexed sets Ap : Set
A family of “restriction morphisms” (a.k.a. monotonicity)

θA : Π{p, q ∈ P} (α ∈ P(q, p)). Ap → Aq

“θA α x lowers its argument x along α ∈ P(q, p)”

s.t. given x ∈ Ap, α ∈ P(q, p) and β ∈ P(r, q):

θA idp x ≡ x θA (β ◦ α) x ≡ θA β (θA α x)

“Lowering is compatible with the structure of P”
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 6 / 54

All Your Base Category Are Belong to Us

What is Psh(P)?

Morphisms: A morphism from (A, θA) to (B, θB) is given by
A family of P-indexed functions fp : Ap → Bp

which is natural, i.e. given x ∈ Ap and α ∈ P(q, p)

θB α (fp x) ≡ fq (θA α x)

“f is compatible with restriction”

Ap
fp //

θA α

��

Bp

θB α

��
Aq

fq // Bq

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 7 / 54

All Your Base Category Are Belong to Us

What is Psh(P)?

Morphisms: A morphism from (A, θA) to (B, θB) is given by
A family of P-indexed functions fp : Ap → Bp

which is natural, i.e. given x ∈ Ap and α ∈ P(q, p)

θB α (fp x) ≡ fq (θA α x)

“f is compatible with restriction”

Ap
fp //

θA α

��

Bp

θB α

��
Aq

fq // Bq

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 7 / 54

All Your Base Category Are Belong to Us

What is Psh(P)?

Morphisms: A morphism from (A, θA) to (B, θB) is given by
A family of P-indexed functions fp : Ap → Bp

which is natural, i.e. given x ∈ Ap and α ∈ P(q, p)

θB α (fp x) ≡ fq (θA α x)

“f is compatible with restriction”

Ap
fp //

θA α

��

Bp

θB α

��
Aq

fq // Bq

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 7 / 54

The Wise Speak Only of What They Know

Psh(P) is a topos.

“Speak, friend, and pullback.”

Who cares?
Presheaves actually form a model of CIC.

` A : □ ⇝ [[A]] ∈ Psh(P) ` M : A ⇝ [M] ∈ Nat(1, [[A]])

Yet another set-theoretical model!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 8 / 54

The Wise Speak Only of What They Know

Psh(P) is a topos.

“Speak, friend, and pullback.”

Who cares?
Presheaves actually form a model of CIC.

` A : □ ⇝ [[A]] ∈ Psh(P) ` M : A ⇝ [M] ∈ Nat(1, [[A]])

Yet another set-theoretical model!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 8 / 54

The Wise Speak Only of What They Know

Psh(P) is a topos.

“Speak, friend, and pullback.”

Who cares?
Presheaves actually form a model of CIC.

` A : □ ⇝ [[A]] ∈ Psh(P) ` M : A ⇝ [M] ∈ Nat(1, [[A]])

Yet another set-theoretical model!
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 8 / 54

ZF Set Up Us The Bomb

Let’s have a look at The Good Properties™ we long for.

Consistency There is no proof of False. ☺
Canonicity Closed integers are integers... are they?

` M : N “(C)ZF-implies” M ≡ S . . . S O 😕
Implementability Type-checking is not decidable. ☹
Reduction Never heard of that. What’s syntax already? 😱
⇝ Exeunt Normalization and Subject reduction.

Phenomenological Law
Set-theoretical models suck.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 9 / 54

ZF Set Up Us The Bomb

Let’s have a look at The Good Properties™ we long for.

Consistency There is no proof of False. ☺

Canonicity Closed integers are integers... are they?

` M : N “(C)ZF-implies” M ≡ S . . . S O 😕
Implementability Type-checking is not decidable. ☹
Reduction Never heard of that. What’s syntax already? 😱
⇝ Exeunt Normalization and Subject reduction.

Phenomenological Law
Set-theoretical models suck.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 9 / 54

ZF Set Up Us The Bomb

Let’s have a look at The Good Properties™ we long for.

Consistency There is no proof of False. ☺
Canonicity Closed integers are integers... are they?

` M : N “(C)ZF-implies” M ≡ S . . . S O 😕

Implementability Type-checking is not decidable. ☹
Reduction Never heard of that. What’s syntax already? 😱
⇝ Exeunt Normalization and Subject reduction.

Phenomenological Law
Set-theoretical models suck.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 9 / 54

ZF Set Up Us The Bomb

Let’s have a look at The Good Properties™ we long for.

Consistency There is no proof of False. ☺
Canonicity Closed integers are integers... are they?

` M : N “(C)ZF-implies” M ≡ S . . . S O 😕
Implementability Type-checking is not decidable. ☹

Reduction Never heard of that. What’s syntax already? 😱
⇝ Exeunt Normalization and Subject reduction.

Phenomenological Law
Set-theoretical models suck.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 9 / 54

ZF Set Up Us The Bomb

Let’s have a look at The Good Properties™ we long for.

Consistency There is no proof of False. ☺
Canonicity Closed integers are integers... are they?

` M : N “(C)ZF-implies” M ≡ S . . . S O 😕
Implementability Type-checking is not decidable. ☹
Reduction Never heard of that. What’s syntax already? 😱

⇝ Exeunt Normalization and Subject reduction.

Phenomenological Law
Set-theoretical models suck.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 9 / 54

ZF Set Up Us The Bomb

Let’s have a look at The Good Properties™ we long for.

Consistency There is no proof of False. ☺
Canonicity Closed integers are integers... are they?

` M : N “(C)ZF-implies” M ≡ S . . . S O 😕
Implementability Type-checking is not decidable. ☹
Reduction Never heard of that. What’s syntax already? 😱
⇝ Exeunt Normalization and Subject reduction.

Phenomenological Law
Set-theoretical models suck.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 9 / 54

ZF Set Up Us The Bomb

Let’s have a look at The Good Properties™ we long for.

Consistency There is no proof of False. ☺
Canonicity Closed integers are integers... are they?

` M : N “(C)ZF-implies” M ≡ S . . . S O 😕
Implementability Type-checking is not decidable. ☹
Reduction Never heard of that. What’s syntax already? 😱
⇝ Exeunt Normalization and Subject reduction.

Phenomenological Law
Set-theoretical models suck.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 9 / 54

Down With Semantics

Syntactic Models

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 10 / 54

The Bleak Truth

What is a model?
Takes syntax as input.
Interprets it into some low-level language.
Must preserve the meaning of the source.
Refines the behaviour of under-specified structures.

This looks suspiciously familiar...

“This is a compiler!”

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 11 / 54

The Bleak Truth

What is a model?
Takes syntax as input.
Interprets it into some low-level language.
Must preserve the meaning of the source.
Refines the behaviour of under-specified structures.

This looks suspiciously familiar...

“This is a compiler!”

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 11 / 54

The Bleak Truth

What is a model?
Takes syntax as input.
Interprets it into some low-level language.
Must preserve the meaning of the source.
Refines the behaviour of under-specified structures.

This looks suspiciously familiar...

“This is a compiler!”
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 11 / 54

On Curry-Howard Poetry

General models are more like interpreters.

No separation between target vs. host languages

`S M : A host−→ ⊨M A “a blob”

Syntactic models are proper compilers.

Target is unrelated to the host language.

`S M : A host−→ `T [M] : [[A]] “an AST”

We will be interested in instances where S, T are type theories.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 12 / 54

On Curry-Howard Poetry

General models are more like interpreters.

No separation between target vs. host languages

`S M : A host−→ ⊨M A “a blob”

Syntactic models are proper compilers.

Target is unrelated to the host language.

`S M : A host−→ `T [M] : [[A]] “an AST”

We will be interested in instances where S, T are type theories.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 12 / 54

On Curry-Howard Poetry

General models are more like interpreters.

No separation between target vs. host languages

`S M : A host−→ ⊨M A “a blob”

Syntactic models are proper compilers.

Target is unrelated to the host language.

`S M : A host−→ `T [M] : [[A]] “an AST”

We will be interested in instances where S, T are type theories.
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 12 / 54

Why Syntactic Models?

compilation

`S M : A implies `T [M] : [[A]]

Obviously, that’s subtle.
The translation [·] must preserve typing (not easy)
In particular, it must preserve conversion (even worse)

Yet, a lot of nice consequences.
Does not require non-type-theoretical foundations (monism)
If T is CIC, can be implemented in Coq (software monism)
Inherit properties from CIC: computationality, decidability, implementation...

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 13 / 54

Why Syntactic Models?

compilation

`S M : A implies `T [M] : [[A]]

Obviously, that’s subtle.
The translation [·] must preserve typing (not easy)
In particular, it must preserve conversion (even worse)

Yet, a lot of nice consequences.
Does not require non-type-theoretical foundations (monism)
If T is CIC, can be implemented in Coq (software monism)
Inherit properties from CIC: computationality, decidability, implementation...

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 13 / 54

Why Syntactic Models?

compilation

`S M : A implies `T [M] : [[A]]

Obviously, that’s subtle.
The translation [·] must preserve typing (not easy)
In particular, it must preserve conversion (even worse)

Yet, a lot of nice consequences.
Does not require non-type-theoretical foundations (monism)
If T is CIC, can be implemented in Coq (software monism)
Inherit properties from CIC: computationality, decidability, implementation...

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 13 / 54

“Is it possible to see the presheaf
construction as a syntactic model?”

French Coat of Arms

Sheaf

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 14 / 54

Persevere Diabolicum

Why the hell am I talking about syntactic presheaves today?

2012 2016 2020
Extending Type

Theory with
Forcing

The Definitional
Side of the Forcing

 (LICS, Jaber,
Tabareau, Sozeau)

 (LICS, Jaber,
Lewertowski, Pédrot,
Tabareau, Sozeau)

Russian Constructivism
in a Prefascist Theory

FAIL FAIL YAY?

 (LICS, Pédrot)

It is the journey, not the destination

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 15 / 54

Persevere Diabolicum

Why the hell am I talking about syntactic presheaves today?

2012 2016 2020
Extending Type

Theory with
Forcing

The Definitional
Side of the Forcing

 (LICS, Jaber,
Tabareau, Sozeau)

 (LICS, Jaber,
Lewertowski, Pédrot,
Tabareau, Sozeau)

Russian Constructivism
in a Prefascist Theory

FAIL FAIL YAY?

 (LICS, Pédrot)

It is the journey, not the destination

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 15 / 54

Persevere Diabolicum

Why the hell am I talking about syntactic presheaves today?

2012 2016 2020
Extending Type

Theory with
Forcing

The Definitional
Side of the Forcing

 (LICS, Jaber,
Tabareau, Sozeau)

 (LICS, Jaber,
Lewertowski, Pédrot,
Tabareau, Sozeau)

Russian Constructivism
in a Prefascist Theory

FAIL FAIL YAY?

 (LICS, Pédrot)

It is the journey, not the destination

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 15 / 54

(We were warned.)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 16 / 54

Syntactic Presheaves, 2012 Edition

“A presheaf is just a functor Pop → Set.”

“Hold my beer!”

Replace Set everywhere with CIC.

What could possibly go wrong?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 17 / 54

Syntactic Presheaves, 2012 Edition

“A presheaf is just a functor Pop → Set.”

“Hold my beer!”

Replace Set everywhere with CIC.

What could possibly go wrong?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 17 / 54

Syntactic Presheaves, 2012 Edition

“A presheaf is just a functor Pop → Set.”

“Hold my beer!”

Replace Set everywhere with CIC.

What could possibly go wrong?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 17 / 54

Syntactic Presheaves, 2012 Edition

“A presheaf is just a functor Pop → Set.”

“Hold my beer!”

Replace Set everywhere with CIC.

What could possibly go wrong?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 17 / 54

Close Encounters of the Third Type

Replace Set everywhere with CIC.

Cat : □ :=

P : □
≤: P→ P→ □
id : Πp. p ≤ p
◦ : Πp q r. p ≤ q → q ≤ r → p ≤ r
eqn : . . . ;

Psh : □ :=

A : P→ □
θA : Π(p q : P) (α : q ≤ p).Ap → Aq
eqn : . . . ;

El (A, θA, e) : □ :=

{
el : Π(p : P).A p
eqn : . . . ;

}

And voilá, the Great Typification is an utter success!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 18 / 54

Close Encounters of the Third Type

Replace Set everywhere with CIC.

Cat : □ :=

P : □
≤: P→ P→ □
id : Πp. p ≤ p
◦ : Πp q r. p ≤ q → q ≤ r → p ≤ r
eqn : . . . ;

Psh : □ :=

A : P→ □
θA : Π(p q : P) (α : q ≤ p).Ap → Aq
eqn : . . . ;

El (A, θA, e) : □ :=

{
el : Π(p : P).A p
eqn : . . . ;

}

And voilá, the Great Typification is an utter success!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 18 / 54

Close Encounters of the Third Type

Replace Set everywhere with CIC.

Cat : □ :=

P : □
≤: P→ P→ □
id : Πp. p ≤ p
◦ : Πp q r. p ≤ q → q ≤ r → p ≤ r
eqn : . . . ;

Psh : □ :=

A : P→ □
θA : Π(p q : P) (α : q ≤ p).Ap → Aq
eqn : . . . ;

El (A, θA, e) : □ :=

{
el : Π(p : P).A p
eqn : . . . ;

}

And voilá, the Great Typification is an utter success!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 18 / 54

Equality is Too Serious a Matter

This almost works...

... except that equations are propositional !!!

El (A, θA, e) : □ :=

{
el : Π(p : P).A p
eqn : . . . ;

}
`CIC M ≡ N 6−→ ` [M] ≡ [N]
`CIC M ≡ N −→ ` e : [M] = [N]

😱 You need to introduce rewriting everywhere 😱

“The Coherence Hell”

😱 Thus the target theory must be EXTENSIONAL 😱

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 19 / 54

Equality is Too Serious a Matter

This almost works...

... except that equations are propositional !!!

El (A, θA, e) : □ :=

{
el : Π(p : P).A p
eqn : . . . ;

}
`CIC M ≡ N 6−→ ` [M] ≡ [N]
`CIC M ≡ N −→ ` e : [M] = [N]

😱 You need to introduce rewriting everywhere 😱

“The Coherence Hell”

😱 Thus the target theory must be EXTENSIONAL 😱

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 19 / 54

Equality is Too Serious a Matter

This almost works...

... except that equations are propositional !!!

El (A, θA, e) : □ :=

{
el : Π(p : P).A p
eqn : . . . ;

}
`CIC M ≡ N 6−→ ` [M] ≡ [N]
`CIC M ≡ N −→ ` e : [M] = [N]

😱 You need to introduce rewriting everywhere 😱

“The Coherence Hell”

😱 Thus the target theory must be EXTENSIONAL 😱

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 19 / 54

Equality is Too Serious a Matter

This almost works...

... except that equations are propositional !!!

El (A, θA, e) : □ :=

{
el : Π(p : P).A p
eqn : . . . ;

}
`CIC M ≡ N 6−→ ` [M] ≡ [N]
`CIC M ≡ N −→ ` e : [M] = [N]

😱 You need to introduce rewriting everywhere 😱

“The Coherence Hell”

😱 Thus the target theory must be EXTENSIONAL 😱
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 19 / 54

That Was Not My Intension

Extensional Type Theory (ETT) is defined by Santa Claus conversion.

Γ ` e : M = N
Γ ` M ≡ N

Arguably better than ZFC (“constructive”)
... but undecidable type checking
... no computation, e.g. β-reduction is undecidable
See Théo Winterhalter’s soon to be defended PhD for more horrors

No True Scotsman
Syntactic models into ETT are not really syntactic models†.

(†) To be more precise, I believe that ETT is not really a type theory.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 20 / 54

That Was Not My Intension

Extensional Type Theory (ETT) is defined by Santa Claus conversion.

Γ ` e : M = N
Γ ` M ≡ N

Arguably better than ZFC (“constructive”)

... but undecidable type checking

... no computation, e.g. β-reduction is undecidable
See Théo Winterhalter’s soon to be defended PhD for more horrors

No True Scotsman
Syntactic models into ETT are not really syntactic models†.

(†) To be more precise, I believe that ETT is not really a type theory.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 20 / 54

That Was Not My Intension

Extensional Type Theory (ETT) is defined by Santa Claus conversion.

Γ ` e : M = N
Γ ` M ≡ N

Arguably better than ZFC (“constructive”)
... but undecidable type checking
... no computation, e.g. β-reduction is undecidable
See Théo Winterhalter’s soon to be defended PhD for more horrors

No True Scotsman
Syntactic models into ETT are not really syntactic models†.

(†) To be more precise, I believe that ETT is not really a type theory.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 20 / 54

That Was Not My Intension

Extensional Type Theory (ETT) is defined by Santa Claus conversion.

Γ ` e : M = N
Γ ` M ≡ N

Arguably better than ZFC (“constructive”)
... but undecidable type checking
... no computation, e.g. β-reduction is undecidable
See Théo Winterhalter’s soon to be defended PhD for more horrors

No True Scotsman
Syntactic models into ETT are not really syntactic models†.

(†) To be more precise, I believe that ETT is not really a type theory.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 20 / 54

That Was Not My Intension

Extensional Type Theory (ETT) is defined by Santa Claus conversion.

Γ ` e : M = N
Γ ` M ≡ N

Arguably better than ZFC (“constructive”)
... but undecidable type checking
... no computation, e.g. β-reduction is undecidable
See Théo Winterhalter’s soon to be defended PhD for more horrors

No True Scotsman
Syntactic models into ETT are not really syntactic models†.

(†) To be more precise, I believe that ETT is not really a type theory.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 20 / 54

(Make conversion great again, and break everything else.)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 21 / 54

Squaring the Circle

(Me to the authors of the 2012 paper, some time before defending PhD.)

— You people are doing it wrong. It cannot work!

— Why?

— Because presheaves are call-by-value!

... and you’re trying to intepret a call-by-name language!

— What on earth does that even mean?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 22 / 54

Squaring the Circle

(Me to the authors of the 2012 paper, some time before defending PhD.)

— You people are doing it wrong. It cannot work!

— Why?

— Because presheaves are call-by-value!

... and you’re trying to intepret a call-by-name language!

— What on earth does that even mean?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 22 / 54

Squaring the Circle

(Me to the authors of the 2012 paper, some time before defending PhD.)

— You people are doing it wrong. It cannot work!

— Why?

— Because presheaves are call-by-value!

... and you’re trying to intepret a call-by-name language!

— What on earth does that even mean?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 22 / 54

This is the Left Adjoint, Right?

CBPV is a nice framework to study effects.

... but I don’t have enough time to present it here.

Theorem
Kripke models factorize through CBPV.

A value type 7→ [[A]]v : Fun(Pop,Set)
X computation type 7→ [[X]]c : |P| → Set

[[U X]]vp := Π(q : P)(α : q ≤ p). [[X]]cq (free functoriality)
θ[[U X]]v (α : q ≤ p)(x : [[U X]]vp) := λ(r : P)(β : r ≤ q). x r (α ◦ β)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 23 / 54

This is the Left Adjoint, Right?

CBPV is a nice framework to study effects.

... but I don’t have enough time to present it here.

Theorem
Kripke models factorize through CBPV.

A value type 7→ [[A]]v : Fun(Pop,Set)
X computation type 7→ [[X]]c : |P| → Set

[[U X]]vp := Π(q : P)(α : q ≤ p). [[X]]cq (free functoriality)
θ[[U X]]v (α : q ≤ p)(x : [[U X]]vp) := λ(r : P)(β : r ≤ q). x r (α ◦ β)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 23 / 54

This is the Left Adjoint, Right?

CBPV is a nice framework to study effects.

... but I don’t have enough time to present it here.

Theorem
Kripke models factorize through CBPV.

A value type 7→ [[A]]v : Fun(Pop,Set)
X computation type 7→ [[X]]c : |P| → Set

[[U X]]vp := Π(q : P)(α : q ≤ p). [[X]]cq (free functoriality)
θ[[U X]]v (α : q ≤ p)(x : [[U X]]vp) := λ(r : P)(β : r ≤ q). x r (α ◦ β)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 23 / 54

This is the Left Adjoint, Right?

CBPV is a nice framework to study effects.

... but I don’t have enough time to present it here.

Theorem
Kripke models factorize through CBPV.

A value type 7→ [[A]]v : Fun(Pop,Set)
X computation type 7→ [[X]]c : |P| → Set

[[U X]]vp := Π(q : P)(α : q ≤ p). [[X]]cq (free functoriality)
θ[[U X]]v (α : q ≤ p)(x : [[U X]]vp) := λ(r : P)(β : r ≤ q). x r (α ◦ β)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 23 / 54

More Than One Way to Do It

Theorem
Kripke models factorize through CBPV.

Canonical embeddings of λ-calculus into CBPV:

CBN (σ → τ)N := U σN → τN (a computation type)
CBV (σ → τ)V := U (σV → F τV) (a value type)

Thus, composing the CBV embedding with the “Kripke” interpretation:

[[(σ → τ)V]]vp := Π(q : P)(α : q ≤ p). [[σV]]vq → [[τV]]vq

This is the presheaf interpretation of arrows! (up to naturality)∗∗

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 24 / 54

More Than One Way to Do It

Theorem
Kripke models factorize through CBPV.

Canonical embeddings of λ-calculus into CBPV:

CBN (σ → τ)N := U σN → τN (a computation type)
CBV (σ → τ)V := U (σV → F τV) (a value type)

Thus, composing the CBV embedding with the “Kripke” interpretation:

[[(σ → τ)V]]vp := Π(q : P)(α : q ≤ p). [[σV]]vq → [[τV]]vq

This is the presheaf interpretation of arrows! (up to naturality)∗∗

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 24 / 54

More Than One Way to Do It

Theorem
Kripke models factorize through CBPV.

Canonical embeddings of λ-calculus into CBPV:

CBN (σ → τ)N := U σN → τN (a computation type)
CBV (σ → τ)V := U (σV → F τV) (a value type)

Thus, composing the CBV embedding with the “Kripke” interpretation:

[[(σ → τ)V]]vp := Π(q : P)(α : q ≤ p). [[σV]]vq → [[τV]]vq

This is the presheaf interpretation of arrows! (up to naturality)∗∗

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 24 / 54

Le Clash
Presheaves are call-by-value!

In particular, they only satisfy the CBV equational theory generated by

(λx. t)V ≡βv t{x := V}

because

t ≡βv u −→ tV ≡CBPV uV −→ [tV]p ≡T [uV]p

Type theory is call-by-name!

Γ ` M : B Γ ` A ≡β B
(Conv)

Γ ` M : A

Folklore
Call-by-name is not call-by-value!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 25 / 54

Le Clash
Presheaves are call-by-value!

In particular, they only satisfy the CBV equational theory generated by

(λx. t)V ≡βv t{x := V}

because

t ≡βv u −→ tV ≡CBPV uV −→ [tV]p ≡T [uV]p

Type theory is call-by-name!

Γ ` M : B Γ ` A ≡β B
(Conv)

Γ ` M : A

Folklore
Call-by-name is not call-by-value!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 25 / 54

Le Clash
Presheaves are call-by-value!

In particular, they only satisfy the CBV equational theory generated by

(λx. t)V ≡βv t{x := V}

because

t ≡βv u −→ tV ≡CBPV uV −→ [tV]p ≡T [uV]p

Type theory is call-by-name!

Γ ` M : B Γ ` A ≡β B
(Conv)

Γ ` M : A

Folklore
Call-by-name is not call-by-value!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 25 / 54

Le Clash
Presheaves are call-by-value!

In particular, they only satisfy the CBV equational theory generated by

(λx. t)V ≡βv t{x := V}

because

t ≡βv u −→ tV ≡CBPV uV −→ [tV]p ≡T [uV]p

Type theory is call-by-name!

Γ ` M : B Γ ` A ≡β B
(Conv)

Γ ` M : A

Folklore
Call-by-name is not call-by-value!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 25 / 54

Le Clash
Presheaves are call-by-value!

In particular, they only satisfy the CBV equational theory generated by

(λx. t)V ≡βv t{x := V}

because

t ≡βv u −→ tV ≡CBPV uV −→ [tV]p ≡T [uV]p

Type theory is call-by-name!

Γ ` M : B Γ ` A ≡β B
(Conv)

Γ ` M : A

Folklore
Call-by-name is not call-by-value!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 25 / 54

If There is No Solution, There is No Problem

Easy solution! Pick the CBN decomposition instead.

[[(σ → τ)N]]cp := (Π(q : P)(α : q ≤ p). [[σN]]cq) → [[τN]]cp

This adapts straightforwardly to the dependently-typed setting.

Theorem (Jaber & al. 2016)
There is a syntactic “presheaf model” of CCω into CIC.

where CCω is CIC without inductive types.

`CCω A : □ −→ p : P `CIC [A]p : Π(q : P)(α : q ≤ p).□
`CCω M : A −→ p : P `CIC [M]p : [A]p p idp
`CCω M ≡ N −→ p : P `CIC [M]p ≡ [N]p

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 26 / 54

If There is No Solution, There is No Problem

Easy solution! Pick the CBN decomposition instead.

[[(σ → τ)N]]cp := (Π(q : P)(α : q ≤ p). [[σN]]cq) → [[τN]]cp

This adapts straightforwardly to the dependently-typed setting.

Theorem (Jaber & al. 2016)
There is a syntactic “presheaf model” of CCω into CIC.

where CCω is CIC without inductive types.

`CCω A : □ −→ p : P `CIC [A]p : Π(q : P)(α : q ≤ p).□
`CCω M : A −→ p : P `CIC [M]p : [A]p p idp
`CCω M ≡ N −→ p : P `CIC [M]p ≡ [N]p

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 26 / 54

If There is No Solution, There is No Problem

Easy solution! Pick the CBN decomposition instead.

[[(σ → τ)N]]cp := (Π(q : P)(α : q ≤ p). [[σN]]cq) → [[τN]]cp

This adapts straightforwardly to the dependently-typed setting.

Theorem (Jaber & al. 2016)
There is a syntactic “presheaf model” of CCω into CIC.

where CCω is CIC without inductive types.

`CCω A : □ −→ p : P `CIC [A]p : Π(q : P)(α : q ≤ p).□
`CCω M : A −→ p : P `CIC [M]p : [A]p p idp
`CCω M ≡ N −→ p : P `CIC [M]p ≡ [N]p

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 26 / 54

If There is No Solution, There is No Problem

Easy solution! Pick the CBN decomposition instead.

[[(σ → τ)N]]cp := (Π(q : P)(α : q ≤ p). [[σN]]cq) → [[τN]]cp

This adapts straightforwardly to the dependently-typed setting.

Theorem (Jaber & al. 2016)
There is a syntactic “presheaf model” of CCω into CIC.

where CCω is CIC without inductive types.

`CCω A : □ −→ p : P `CIC [A]p : Π(q : P)(α : q ≤ p).□
`CCω M : A −→ p : P `CIC [M]p : [A]p p idp
`CCω M ≡ N −→ p : P `CIC [M]p ≡ [N]p

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 26 / 54

Robbing Peter to Pay Paul
“What about inductive types?”

The model disproves induction principles...

Not A Suprise
The Kripke translation introduces an effect! (a monotonic reader)

The Proverbial Paul

CBPV Folklore
In effectful CBV, functions are not functions. (no substitution)
In effectful CBN, inductive types are not inductive types. (no dep. elim.)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 27 / 54

Robbing Peter to Pay Paul
“What about inductive types?”

The model disproves induction principles...

Not A Suprise
The Kripke translation introduces an effect! (a monotonic reader)

The Proverbial Paul

CBPV Folklore
In effectful CBV, functions are not functions. (no substitution)
In effectful CBN, inductive types are not inductive types. (no dep. elim.)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 27 / 54

Robbing Peter to Pay Paul
“What about inductive types?”

The model disproves induction principles...

Not A Suprise
The Kripke translation introduces an effect! (a monotonic reader)

The Proverbial Paul

CBPV Folklore
In effectful CBV, functions are not functions. (no substitution)
In effectful CBN, inductive types are not inductive types. (no dep. elim.)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 27 / 54

Conclusion of the Episode II

Good News
This is one of the first reasonable examples of dependent effects.

Bad News
We still don’t have a syntactic presheaf model.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 28 / 54

Conclusion of the Episode II

Good News
This is one of the first reasonable examples of dependent effects.

Bad News
We still don’t have a syntactic presheaf model.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 28 / 54

Interlude

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 29 / 54

Interlude

In the meantime we worked quite a bit on effectful type theories

Weaning translation
Baclofen Type Theory
Exceptional Type Theory
...

This helped us understand what we first missed!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 30 / 54

Interlude

In the meantime we worked quite a bit on effectful type theories

Weaning translation
Baclofen Type Theory
Exceptional Type Theory
...

This helped us understand what we first missed!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 30 / 54

Values Are Not What They Once Were

Categorical presheaves form a model of the whole λ-calculus.

... in particular, it does interpret full β-conversion (although extensionally).

This is because of the naturality requirement on functions.

[[A → B]]p := f : Π(q ≤ p). [[A]]q → [[B]]q s.t.
[[A]]q

fq α //

θA β

��

[[B]]q

θB β

��
[[A]]r

fr (α◦β)// [[B]]r

We do not have an equivalent in our CBN interpretation
Isn’t this some ad-hoc trick?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 31 / 54

Values Are Not What They Once Were

Categorical presheaves form a model of the whole λ-calculus.

... in particular, it does interpret full β-conversion (although extensionally).

This is because of the naturality requirement on functions.

[[A → B]]p := f : Π(q ≤ p). [[A]]q → [[B]]q s.t.
[[A]]q

fq α //

θA β

��

[[B]]q

θB β

��
[[A]]r

fr (α◦β)// [[B]]r

We do not have an equivalent in our CBN interpretation
Isn’t this some ad-hoc trick?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 31 / 54

Values Are Not What They Once Were

Categorical presheaves form a model of the whole λ-calculus.

... in particular, it does interpret full β-conversion (although extensionally).

This is because of the naturality requirement on functions.

[[A → B]]p := f : Π(q ≤ p). [[A]]q → [[B]]q s.t.
[[A]]q

fq α //

θA β

��

[[B]]q

θB β

��
[[A]]r

fr (α◦β)// [[B]]r

We do not have an equivalent in our CBN interpretation
Isn’t this some ad-hoc trick?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 31 / 54

Completely Unrelated Slide

Consider an effectful CBV λ-calculus.

Definition (Führmann ’99)
A term t : A is said to be thunkable if it satisfies the equation

let x := t in λ(). x ≡ λ(). t

Thunkability intuitively captures “observational purity”
It does so generically, i.e. does not depend on effect considered
In a pure language, all terms are thunkable

Theorem (Folklore Realizability)
The sublanguage of hereditarily thunkable terms satisfies full β-conversion.

f ⊩ A → B := ∀u. u ⊩ A −→ f u thk ∧ f u ⊩ B

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 32 / 54

Completely Unrelated Slide

Consider an effectful CBV λ-calculus.

Definition (Führmann ’99)
A term t : A is said to be thunkable if it satisfies the equation

let x := t in λ(). x ≡ λ(). t

Thunkability intuitively captures “observational purity”
It does so generically, i.e. does not depend on effect considered
In a pure language, all terms are thunkable

Theorem (Folklore Realizability)
The sublanguage of hereditarily thunkable terms satisfies full β-conversion.

f ⊩ A → B := ∀u. u ⊩ A −→ f u thk ∧ f u ⊩ B

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 32 / 54

Completely Unrelated Slide

Consider an effectful CBV λ-calculus.

Definition (Führmann ’99)
A term t : A is said to be thunkable if it satisfies the equation

let x := t in λ(). x ≡ λ(). t

Thunkability intuitively captures “observational purity”
It does so generically, i.e. does not depend on effect considered
In a pure language, all terms are thunkable

Theorem (Folklore Realizability)
The sublanguage of hereditarily thunkable terms satisfies full β-conversion.

f ⊩ A → B := ∀u. u ⊩ A −→ f u thk ∧ f u ⊩ B

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 32 / 54

Presheaves Are (Pure) Call-By-Value!

Now the magic trick.

Theorem
A term t is thunkable in the Kripke semantics iff [t]p is natural in p.

Psh(P) is the “pure” subcategory of an effectful CBV language!

This is a systematic construction that isn’t tied to Kripke semantics.
Unfortunately it relies on extensionality.
What about CBN?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 33 / 54

Presheaves Are (Pure) Call-By-Value!

Now the magic trick.

Theorem
A term t is thunkable in the Kripke semantics iff [t]p is natural in p.

Psh(P) is the “pure” subcategory of an effectful CBV language!

This is a systematic construction that isn’t tied to Kripke semantics.
Unfortunately it relies on extensionality.
What about CBN?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 33 / 54

Syntactic Models For Free

A CBN counterpart of thunkability is parametricity

Bernardy-Lasson ’11
There is a well-known parametricity interpretation for type theory

Γ `CIC M : A −→ [[Γ]]ε `CIC [M]ε : [[A]]ε M

where [[·]]ε := · and [[Γ, x : A]]ε := [[Γ]]ε, x : A, xε : [[A]]ε x

Turns out it is a syntactic model, compatible with intensionality!

It is a special case of a more general internal realizability interpretation.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 34 / 54

Syntactic Models For Free

A CBN counterpart of thunkability is parametricity

Bernardy-Lasson ’11
There is a well-known parametricity interpretation for type theory

Γ `CIC M : A −→ [[Γ]]ε `CIC [M]ε : [[A]]ε M

where [[·]]ε := · and [[Γ, x : A]]ε := [[Γ]]ε, x : A, xε : [[A]]ε x

Turns out it is a syntactic model, compatible with intensionality!

It is a special case of a more general internal realizability interpretation.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 34 / 54

On Parametric Presheaves

What does parametricity look like on the CBN presheaf model?

x : B −→
{

x : (Π(q : P)(α : q ≤ p).B)
xε : Bε p x

We have a bit of constraints. To get dependent elimination we need:
1 Bε p x iff (x = λqα. tt) or (x = λqα. ff)
2 in a unique way, i.e. b1, b2 : Bε p x ` b1 = b2 (i.e. a HoTT proposition)

But we also critically need to be compatible with the presheaf structure!
3 That is, θBε (α : q ≤ p) : Bε p x → Bε q (α · x)
4 with further definitional functoriality to avoid coherence issues

😱 Guess what? The CBV vs. CBN conundrum is back. 😱

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 35 / 54

On Parametric Presheaves

What does parametricity look like on the CBN presheaf model?

x : B −→
{

x : (Π(q : P)(α : q ≤ p).B)
xε : Bε p x

We have a bit of constraints. To get dependent elimination we need:
1 Bε p x iff (x = λqα. tt) or (x = λqα. ff)

2 in a unique way, i.e. b1, b2 : Bε p x ` b1 = b2 (i.e. a HoTT proposition)

But we also critically need to be compatible with the presheaf structure!
3 That is, θBε (α : q ≤ p) : Bε p x → Bε q (α · x)
4 with further definitional functoriality to avoid coherence issues

😱 Guess what? The CBV vs. CBN conundrum is back. 😱

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 35 / 54

On Parametric Presheaves

What does parametricity look like on the CBN presheaf model?

x : B −→
{

x : (Π(q : P)(α : q ≤ p).B)
xε : Bε p x

We have a bit of constraints. To get dependent elimination we need:
1 Bε p x iff (x = λqα. tt) or (x = λqα. ff)
2 in a unique way, i.e. b1, b2 : Bε p x ` b1 = b2 (i.e. a HoTT proposition)

But we also critically need to be compatible with the presheaf structure!
3 That is, θBε (α : q ≤ p) : Bε p x → Bε q (α · x)
4 with further definitional functoriality to avoid coherence issues

😱 Guess what? The CBV vs. CBN conundrum is back. 😱

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 35 / 54

On Parametric Presheaves

What does parametricity look like on the CBN presheaf model?

x : B −→
{

x : (Π(q : P)(α : q ≤ p).B)
xε : Bε p x

We have a bit of constraints. To get dependent elimination we need:
1 Bε p x iff (x = λqα. tt) or (x = λqα. ff)
2 in a unique way, i.e. b1, b2 : Bε p x ` b1 = b2 (i.e. a HoTT proposition)

But we also critically need to be compatible with the presheaf structure!
3 That is, θBε (α : q ≤ p) : Bε p x → Bε q (α · x)

4 with further definitional functoriality to avoid coherence issues

😱 Guess what? The CBV vs. CBN conundrum is back. 😱

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 35 / 54

On Parametric Presheaves

What does parametricity look like on the CBN presheaf model?

x : B −→
{

x : (Π(q : P)(α : q ≤ p).B)
xε : Bε p x

We have a bit of constraints. To get dependent elimination we need:
1 Bε p x iff (x = λqα. tt) or (x = λqα. ff)
2 in a unique way, i.e. b1, b2 : Bε p x ` b1 = b2 (i.e. a HoTT proposition)

But we also critically need to be compatible with the presheaf structure!
3 That is, θBε (α : q ≤ p) : Bε p x → Bε q (α · x)
4 with further definitional functoriality to avoid coherence issues

😱 Guess what? The CBV vs. CBN conundrum is back. 😱

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 35 / 54

On Parametric Presheaves

What does parametricity look like on the CBN presheaf model?

x : B −→
{

x : (Π(q : P)(α : q ≤ p).B)
xε : Bε p x

We have a bit of constraints. To get dependent elimination we need:
1 Bε p x iff (x = λqα. tt) or (x = λqα. ff)
2 in a unique way, i.e. b1, b2 : Bε p x ` b1 = b2 (i.e. a HoTT proposition)

But we also critically need to be compatible with the presheaf structure!
3 That is, θBε (α : q ≤ p) : Bε p x → Bε q (α · x)
4 with further definitional functoriality to avoid coherence issues

😱 Guess what? The CBV vs. CBN conundrum is back. 😱
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 35 / 54

Trouble All The Way Up
This is exactly the CBV vs. CBN conundrum one level higher

Either you pick Bε p x := (x = λqα. tt) + (x = λqα. ff)

⇝ this satisfies unicity but breaks definitionality (i.e. CBV).

Or you freeify Bε p x := Πqα.(α · x = λrβ. tt) + (α · x = λrβ. ff)

⇝ this satisfies definitionality but breaks unicity (i.e. CBN).

It is not possible to get both at the same time in CIC!

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 36 / 54

Trouble All The Way Up
This is exactly the CBV vs. CBN conundrum one level higher

Either you pick Bε p x := (x = λqα. tt) + (x = λqα. ff)

⇝ this satisfies unicity but breaks definitionality (i.e. CBV).

Or you freeify Bε p x := Πqα.(α · x = λrβ. tt) + (α · x = λrβ. ff)

⇝ this satisfies definitionality but breaks unicity (i.e. CBN).

It is not possible to get both at the same time in CIC!
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 36 / 54

Playing Cubes
We could solve this with infinite towers of parametricity.

That is, the n-level proof is guaranteed to be pure by then (n + 1)-level one.

``Oh noes, not cubical type theory again!''

But CuTT itself is justified by presheaf models.

What would be the point to implement presheaves using presheaves?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 37 / 54

Playing Cubes
We could solve this with infinite towers of parametricity.

That is, the n-level proof is guaranteed to be pure by then (n + 1)-level one.

``Oh noes, not cubical type theory again!''

But CuTT itself is justified by presheaf models.

What would be the point to implement presheaves using presheaves?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 37 / 54

Playing Cubes
We could solve this with infinite towers of parametricity.

That is, the n-level proof is guaranteed to be pure by then (n + 1)-level one.

``Oh noes, not cubical type theory again!''

But CuTT itself is justified by presheaf models.

What would be the point to implement presheaves using presheaves?
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 37 / 54

2 2
(On the virtues of Authoritarianism.)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 38 / 54

It is a Revolution

Essentially, we were blocked on this issue since then. When suddenly...

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau.
Definitional proof-irrelevance without K.
Proc. ACM Program. Lang., 3(POPL):3:1–3:28, 2019.

They introduce a new sort SProp of strict propositions.

M,N : A : SProp −→ ` M ≡ N
A well-behaved subset of Prop compatible with HoTT
It enjoys all good syntactic properties

⇝ SProp is closed under products.

` A : □, x : A ` B : SProp −→ ` Π(x : A).B : SProp

⇝ Only False is eliminable from SProp into Type.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 39 / 54

It is a Revolution

Essentially, we were blocked on this issue since then. When suddenly...

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau.
Definitional proof-irrelevance without K.
Proc. ACM Program. Lang., 3(POPL):3:1–3:28, 2019.

They introduce a new sort SProp of strict propositions.

M,N : A : SProp −→ ` M ≡ N
A well-behaved subset of Prop compatible with HoTT
It enjoys all good syntactic properties

⇝ SProp is closed under products.

` A : □, x : A ` B : SProp −→ ` Π(x : A).B : SProp

⇝ Only False is eliminable from SProp into Type.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 39 / 54

It is a Revolution

Essentially, we were blocked on this issue since then. When suddenly...

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau.
Definitional proof-irrelevance without K.
Proc. ACM Program. Lang., 3(POPL):3:1–3:28, 2019.

They introduce a new sort SProp of strict propositions.

M,N : A : SProp −→ ` M ≡ N
A well-behaved subset of Prop compatible with HoTT
It enjoys all good syntactic properties

⇝ SProp is closed under products.

` A : □, x : A ` B : SProp −→ ` Π(x : A).B : SProp

⇝ Only False is eliminable from SProp into Type.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 39 / 54

It is a Revolution

Essentially, we were blocked on this issue since then. When suddenly...

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau.
Definitional proof-irrelevance without K.
Proc. ACM Program. Lang., 3(POPL):3:1–3:28, 2019.

They introduce a new sort SProp of strict propositions.

M,N : A : SProp −→ ` M ≡ N
A well-behaved subset of Prop compatible with HoTT
It enjoys all good syntactic properties

⇝ SProp is closed under products.

` A : □, x : A ` B : SProp −→ ` Π(x : A).B : SProp

⇝ Only False is eliminable from SProp into Type.
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 39 / 54

A Strict Doctrine
Possible Extension

sCIC additionally allows the elimination of eq from SProp to Type

This gives rise to a strict equality, i.e. sCIC has definitional UIP.

When the libertarian HoTT freely adds infinite towers of equalities...

... the authoritarian sCIC will instead guillotine all higher equalities.

Art. 1. All humans are born uniquely equal in rights.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 40 / 54

A Strict Doctrine
Possible Extension

sCIC additionally allows the elimination of eq from SProp to Type

This gives rise to a strict equality, i.e. sCIC has definitional UIP.

When the libertarian HoTT freely adds infinite towers of equalities...

... the authoritarian sCIC will instead guillotine all higher equalities.

Art. 1. All humans are born uniquely equal in rights.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 40 / 54

Strict Parametricity
In the parametric presheaf translation

Strict equality is the authoritarian way to solve the coherence hell.
make the parametricity predicate free ⇝ definitional functoriality
require it to be a strict proposition ⇝ proof uniqueness

x : A −→
{

x : Π(q ≤ p). [[A]]q
xε : Π(q ≤ p). [[A]]ε q (α · x)

where critically [[A]]ε p x : SProp.

We call the result the prefascist translation. (lat. fascis : sheaf)

Theorem
The prefascist translation is a syntactic model of CIC into sCIC.

Full conversion, full dependent elimination.
The actual construction is a tad involved, but boils down to the above.
Unsurprinsingly, UIP is required to interpret universes (tricky!).

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 41 / 54

Strict Parametricity
In the parametric presheaf translation

Strict equality is the authoritarian way to solve the coherence hell.
make the parametricity predicate free ⇝ definitional functoriality
require it to be a strict proposition ⇝ proof uniqueness

x : A −→
{

x : Π(q ≤ p). [[A]]q
xε : Π(q ≤ p). [[A]]ε q (α · x)

where critically [[A]]ε p x : SProp.

We call the result the prefascist translation. (lat. fascis : sheaf)

Theorem
The prefascist translation is a syntactic model of CIC into sCIC.

Full conversion, full dependent elimination.
The actual construction is a tad involved, but boils down to the above.
Unsurprinsingly, UIP is required to interpret universes (tricky!).

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 41 / 54

Strict Parametricity
In the parametric presheaf translation

Strict equality is the authoritarian way to solve the coherence hell.
make the parametricity predicate free ⇝ definitional functoriality
require it to be a strict proposition ⇝ proof uniqueness

x : A −→
{

x : Π(q ≤ p). [[A]]q
xε : Π(q ≤ p). [[A]]ε q (α · x)

where critically [[A]]ε p x : SProp.

We call the result the prefascist translation. (lat. fascis : sheaf)

Theorem
The prefascist translation is a syntactic model of CIC into sCIC.

Full conversion, full dependent elimination.
The actual construction is a tad involved, but boils down to the above.
Unsurprinsingly, UIP is required to interpret universes (tricky!).

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 41 / 54

No Pain, No Gain

sCIC is way weaker than ETT

sCIC is conjectured to enjoy the usual good syntactic properties.
Canonicity seems relatively easy to show
UIP makes reduction depend on conversion though
SN is problematic, e.g. sCIC + an impredicative universe is not SN
Hoping that SN holds in the predicative case, decidability follows

We don’t rely on impredicativity in the prefascist model

We would inherit the purported good properties sCIC for free.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 42 / 54

No Pain, No Gain

sCIC is way weaker than ETT

sCIC is conjectured to enjoy the usual good syntactic properties.
Canonicity seems relatively easy to show
UIP makes reduction depend on conversion though
SN is problematic, e.g. sCIC + an impredicative universe is not SN
Hoping that SN holds in the predicative case, decidability follows

We don’t rely on impredicativity in the prefascist model

We would inherit the purported good properties sCIC for free.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 42 / 54

Back to Set

Set is a model of sCIC

Thus, the prefascist model can also be described set-theoretically.

A prefascist set A := (Ap, (−) ⊩p A) over a category P is given by
a family of sets Ap for p ∈ P.
a family of predicates (−) ⊩p A ⊆ Conep(A) := Π(q : P)(α : q ≤ p).Aq

A prefascist morphism f from A to B is
a family of functions fp : Elp A → Bp

preserving predicates, i.e.
∀x : Elp A. appp(f, x) ⊩p B

where
Elp A := {x : Conep(A) | ∀q (α : q ≤ p). (α · x) ⊩q A}
appp(f, x) := λq (α : q ≤ p). fq (α · x)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 43 / 54

Back to Set

Set is a model of sCIC

Thus, the prefascist model can also be described set-theoretically.

A prefascist set A := (Ap, (−) ⊩p A) over a category P is given by
a family of sets Ap for p ∈ P.
a family of predicates (−) ⊩p A ⊆ Conep(A) := Π(q : P)(α : q ≤ p).Aq

A prefascist morphism f from A to B is
a family of functions fp : Elp A → Bp

preserving predicates, i.e.
∀x : Elp A. appp(f, x) ⊩p B

where
Elp A := {x : Conep(A) | ∀q (α : q ≤ p). (α · x) ⊩q A}
appp(f, x) := λq (α : q ≤ p). fq (α · x)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 43 / 54

Back to Set

Set is a model of sCIC

Thus, the prefascist model can also be described set-theoretically.

A prefascist set A := (Ap, (−) ⊩p A) over a category P is given by
a family of sets Ap for p ∈ P.
a family of predicates (−) ⊩p A ⊆ Conep(A) := Π(q : P)(α : q ≤ p).Aq

A prefascist morphism f from A to B is
a family of functions fp : Elp A → Bp

preserving predicates, i.e.
∀x : Elp A. appp(f, x) ⊩p B

where
Elp A := {x : Conep(A) | ∀q (α : q ≤ p). (α · x) ⊩q A}
appp(f, x) := λq (α : q ≤ p). fq (α · x)

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 43 / 54

Through The Looking Glass

Theorem
Prefascist sets over P form a category Pfs(P) with definitional laws.

Theorem
As categories, Psh(P) and Pfs(P) are equivalent.

Proving this requires extensionality principles!

Hence, in a set-theoretical meta, both describe the same objects
Yet, Pfs(P) is better behaved in an intensional setting
This could come in handy for higher category theory...

Takeaway: prefascist sets are a better presentation of presheaves

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 44 / 54

Through The Looking Glass

Theorem
Prefascist sets over P form a category Pfs(P) with definitional laws.

Theorem
As categories, Psh(P) and Pfs(P) are equivalent.

Proving this requires extensionality principles!

Hence, in a set-theoretical meta, both describe the same objects
Yet, Pfs(P) is better behaved in an intensional setting
This could come in handy for higher category theory...

Takeaway: prefascist sets are a better presentation of presheaves

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 44 / 54

Through The Looking Glass

Theorem
Prefascist sets over P form a category Pfs(P) with definitional laws.

Theorem
As categories, Psh(P) and Pfs(P) are equivalent.

Proving this requires extensionality principles!

Hence, in a set-theoretical meta, both describe the same objects
Yet, Pfs(P) is better behaved in an intensional setting
This could come in handy for higher category theory...

Takeaway: prefascist sets are a better presentation of presheaves

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 44 / 54

Through The Looking Glass

Theorem
Prefascist sets over P form a category Pfs(P) with definitional laws.

Theorem
As categories, Psh(P) and Pfs(P) are equivalent.

Proving this requires extensionality principles!

Hence, in a set-theoretical meta, both describe the same objects
Yet, Pfs(P) is better behaved in an intensional setting
This could come in handy for higher category theory...

Takeaway: prefascist sets are a better presentation of presheaves

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 44 / 54

Application

ОТРАСЛЯМ
ПО ВСЕМ

ЛОГИКИ

Russian Constructivism

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 45 / 54

Russian Constructivist School

A splinter group of constructivists, whose core tenet can be summarized as:

Proofs are Kleene realizers

Thus, the principle that puts it apart both from Brouwer and Bishop:

Markov’s Principle (MP)

∀(f : N→ B).¬¬(∃n : N. f n = tt) → ∃n : N. f n = tt

A lot of equivalent statements, e.g. a TM that doesn’t loop terminates
Semi-classical: HAω ⊊ HAω + MP ⊊ PAω

Known to preserve existence property (i.e. canonicity)

What if we tried to extend CIC with MP through a syntactic model?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 46 / 54

Russian Constructivist School

A splinter group of constructivists, whose core tenet can be summarized as:

Proofs are Kleene realizers

Thus, the principle that puts it apart both from Brouwer and Bishop:

Markov’s Principle (MP)

∀(f : N→ B).¬¬(∃n : N. f n = tt) → ∃n : N. f n = tt

A lot of equivalent statements, e.g. a TM that doesn’t loop terminates
Semi-classical: HAω ⊊ HAω + MP ⊊ PAω

Known to preserve existence property (i.e. canonicity)

What if we tried to extend CIC with MP through a syntactic model?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 46 / 54

Russian Constructivist School

A splinter group of constructivists, whose core tenet can be summarized as:

Proofs are Kleene realizers

Thus, the principle that puts it apart both from Brouwer and Bishop:

Markov’s Principle (MP)

∀(f : N→ B).¬¬(∃n : N. f n = tt) → ∃n : N. f n = tt

A lot of equivalent statements, e.g. a TM that doesn’t loop terminates
Semi-classical: HAω ⊊ HAω + MP ⊊ PAω

Known to preserve existence property (i.e. canonicity)

What if we tried to extend CIC with MP through a syntactic model?

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 46 / 54

MP in Kleene Realizability

Let’s look at the realizer

∀(f : N→ B).¬¬(∃n : N. f n = tt) → ∃n : N. f n = tt
let mp f _ :=

let n := ref 0 in
while true do

if f !n then return n else n := n + 1
done

Proving mp ⊩ MP needs MP in the meta-theory!

As such, this is cheating
The realizer doesn’t use the doubly-negated proof
Relies on a semi-classical meta-theory and unbounded loops
We have little hope to implement this in CIC with a syntactic model

We need something else...

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 47 / 54

MP in Kleene Realizability

Let’s look at the realizer

∀(f : N→ B).¬¬(∃n : N. f n = tt) → ∃n : N. f n = tt
let mp f _ :=

let n := ref 0 in
while true do

if f !n then return n else n := n + 1
done

Proving mp ⊩ MP needs MP in the meta-theory!

As such, this is cheating
The realizer doesn’t use the doubly-negated proof
Relies on a semi-classical meta-theory and unbounded loops
We have little hope to implement this in CIC with a syntactic model

We need something else...

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 47 / 54

MP in Kleene Realizability

Let’s look at the realizer

∀(f : N→ B).¬¬(∃n : N. f n = tt) → ∃n : N. f n = tt
let mp f _ :=

let n := ref 0 in
while true do

if f !n then return n else n := n + 1
done

Proving mp ⊩ MP needs MP in the meta-theory!

As such, this is cheating
The realizer doesn’t use the doubly-negated proof
Relies on a semi-classical meta-theory and unbounded loops
We have little hope to implement this in CIC with a syntactic model

We need something else...
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 47 / 54

What Else?

Not one, but at least two alternatives!

Coquand-Hofmann’s syntactic model for HAω + MP
Herbelin’s direct style proof using static exceptions

CH’s model is a mix of Kripke semantics and Friedman’s A-translation
Kripke semantics ⇝ global cell p : N→ B where

q ≤ p := q pointwise truer than p

A-translation ⇝ exceptions of type Ap := ∃n : N. p n = tt

The secret sauce is that the exception type depends on the current p

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 48 / 54

What Else?

Not one, but at least two alternatives!

Coquand-Hofmann’s syntactic model for HAω + MP
Herbelin’s direct style proof using static exceptions

CH’s model is a mix of Kripke semantics and Friedman’s A-translation
Kripke semantics ⇝ global cell p : N→ B where

q ≤ p := q pointwise truer than p

A-translation ⇝ exceptions of type Ap := ∃n : N. p n = tt

The secret sauce is that the exception type depends on the current p

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 48 / 54

What Else?

Not one, but at least two alternatives!

Coquand-Hofmann’s syntactic model for HAω + MP
Herbelin’s direct style proof using static exceptions

CH’s model is a mix of Kripke semantics and Friedman’s A-translation
Kripke semantics ⇝ global cell p : N→ B where

q ≤ p := q pointwise truer than p

A-translation ⇝ exceptions of type Ap := ∃n : N. p n = tt

The secret sauce is that the exception type depends on the current p

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 48 / 54

What Else?

Not one, but at least two alternatives!

Coquand-Hofmann’s syntactic model for HAω + MP
Herbelin’s direct style proof using static exceptions

CH’s model is a mix of Kripke semantics and Friedman’s A-translation
Kripke semantics ⇝ global cell p : N→ B where

q ≤ p := q pointwise truer than p

A-translation ⇝ exceptions of type Ap := ∃n : N. p n = tt

The secret sauce is that the exception type depends on the current p
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 48 / 54

Pipelining
Coquand-Hofmann’s model is a bit ad-hoc

Instead, we define the Calculus of Constructions with Completeness Principles as

CCCP (⊇ CIC) Exn−→ CIC + E Pfs−→ sCIC

Pfs is the prefascist model described before
Exn is the exceptional model, a CIC-worthy A-translation

Theorem
If sCIC enjoys The Good Properties™ then so does CCCP.

Exn is a very simple syntactic model of CIC

Pick a fixed type E of exceptions in the target theory.

`S A : □ −→ `T [[A]]E : □ + `T [A]∅E : E → [[A]]E

In particular [[¬A]]E ∼= [[A]]E → E

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 49 / 54

Pipelining
Coquand-Hofmann’s model is a bit ad-hoc

Instead, we define the Calculus of Constructions with Completeness Principles as

CCCP (⊇ CIC) Exn−→ CIC + E Pfs−→ sCIC

Pfs is the prefascist model described before
Exn is the exceptional model, a CIC-worthy A-translation

Theorem
If sCIC enjoys The Good Properties™ then so does CCCP.

Exn is a very simple syntactic model of CIC

Pick a fixed type E of exceptions in the target theory.

`S A : □ −→ `T [[A]]E : □ + `T [A]∅E : E → [[A]]E

In particular [[¬A]]E ∼= [[A]]E → E

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 49 / 54

Pipelining
Coquand-Hofmann’s model is a bit ad-hoc

Instead, we define the Calculus of Constructions with Completeness Principles as

CCCP (⊇ CIC) Exn−→ CIC + E Pfs−→ sCIC

Pfs is the prefascist model described before
Exn is the exceptional model, a CIC-worthy A-translation

Theorem
If sCIC enjoys The Good Properties™ then so does CCCP.

Exn is a very simple syntactic model of CIC

Pick a fixed type E of exceptions in the target theory.

`S A : □ −→ `T [[A]]E : □ + `T [A]∅E : E → [[A]]E

In particular [[¬A]]E ∼= [[A]]E → E
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 49 / 54

Monic Fail
We perform the exceptional translation over an exotic type of exceptions

CCCP Exn−→ CIC + E Pfs−→ sCIC
In the the prefascist model over N→ B, Ep := Σn : N. p n = tt

We also have a modality in CIC + E

local : (N→ B) → □→ □
[local φ A]p

∼
:= [A]p∧φ

return : A → local φ A
local commutes to arrows and positive types
local φ E ∼= E + (Σn : N. φ n = tt)

Theorem
CCCP validates MP.

Proof by symbol pushing in CIC+ E by the above and [[¬A]]E ∼= [[A]]E → E .

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 50 / 54

Monic Fail
We perform the exceptional translation over an exotic type of exceptions

CCCP Exn−→ CIC + E Pfs−→ sCIC
In the the prefascist model over N→ B, Ep := Σn : N. p n = tt

We also have a modality in CIC + E

local : (N→ B) → □→ □
[local φ A]p

∼
:= [A]p∧φ

return : A → local φ A
local commutes to arrows and positive types
local φ E ∼= E + (Σn : N. φ n = tt)

Theorem
CCCP validates MP.

Proof by symbol pushing in CIC+ E by the above and [[¬A]]E ∼= [[A]]E → E .

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 50 / 54

Monic Fail
We perform the exceptional translation over an exotic type of exceptions

CCCP Exn−→ CIC + E Pfs−→ sCIC
In the the prefascist model over N→ B, Ep := Σn : N. p n = tt

We also have a modality in CIC + E

local : (N→ B) → □→ □
[local φ A]p

∼
:= [A]p∧φ

return : A → local φ A
local commutes to arrows and positive types
local φ E ∼= E + (Σn : N. φ n = tt)

Theorem
CCCP validates MP.

Proof by symbol pushing in CIC+ E by the above and [[¬A]]E ∼= [[A]]E → E .
P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 50 / 54

A Computational Analysis of MP

Every time we go under local we get new exceptions!

local φ E ∼= E + (Σn : N. φ n = tt)

return is a delimited continuation prompt / static exception binder.

The structure of the realizer thus follows closely Herbelin’s proof.

mp (p : ¬¬(∃n. f n = tt)) :=
tryα ⊥e (p (λk. k (λn. raiseα n))) with α n 7→ n

Thus, Herbelin’s proof is the direct style variant of Coquand-Hofmann

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 51 / 54

A Computational Analysis of MP

Every time we go under local we get new exceptions!

local φ E ∼= E + (Σn : N. φ n = tt)

return is a delimited continuation prompt / static exception binder.

The structure of the realizer thus follows closely Herbelin’s proof.

mp (p : ¬¬(∃n. f n = tt)) :=
tryα ⊥e (p (λk. k (λn. raiseα n))) with α n 7→ n

Thus, Herbelin’s proof is the direct style variant of Coquand-Hofmann

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 51 / 54

A Computational Analysis of MP

Every time we go under local we get new exceptions!

local φ E ∼= E + (Σn : N. φ n = tt)

return is a delimited continuation prompt / static exception binder.

The structure of the realizer thus follows closely Herbelin’s proof.

mp (p : ¬¬(∃n. f n = tt)) :=
tryα ⊥e (p (λk. k (λn. raiseα n))) with α n 7→ n

Thus, Herbelin’s proof is the direct style variant of Coquand-Hofmann

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 51 / 54

Final Digression

This is also highly reminiscent of NbE models

Two canonical ways to extend Kripke completeness to positive types:
Add neutral terms to the semantic of positive types
Add MP in the meta

Neutral terms behave as statically bound exceptions

As our model shows, this two techniques are morally equivalent.

This also highlights suspicious ties between delimited continuations and
presheaves.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 52 / 54

Final Digression

This is also highly reminiscent of NbE models

Two canonical ways to extend Kripke completeness to positive types:
Add neutral terms to the semantic of positive types
Add MP in the meta

Neutral terms behave as statically bound exceptions

As our model shows, this two techniques are morally equivalent.

This also highlights suspicious ties between delimited continuations and
presheaves.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 52 / 54

Conclusion

On presheaves:
Presheaves are the pure fragment of an effectful CBV language
We gave a computationally better-behaved presentation of presheaves
It is a syntactic model that relies on strict equality in the target
Provides for free extensions of CIC with SN, canonicity and the like
... assuming sCIC enjoys this (†)

On MP:
Static exceptions as a composition prefascist + exceptions
This provides a computational extension of CIC that validates MP

TODO:
Implement cubical type theory in this model

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 53 / 54

Conclusion

On presheaves:
Presheaves are the pure fragment of an effectful CBV language
We gave a computationally better-behaved presentation of presheaves
It is a syntactic model that relies on strict equality in the target
Provides for free extensions of CIC with SN, canonicity and the like
... assuming sCIC enjoys this (†)

On MP:
Static exceptions as a composition prefascist + exceptions
This provides a computational extension of CIC that validates MP

TODO:
Implement cubical type theory in this model

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 53 / 54

Conclusion

On presheaves:
Presheaves are the pure fragment of an effectful CBV language
We gave a computationally better-behaved presentation of presheaves
It is a syntactic model that relies on strict equality in the target
Provides for free extensions of CIC with SN, canonicity and the like
... assuming sCIC enjoys this (†)

On MP:
Static exceptions as a composition prefascist + exceptions
This provides a computational extension of CIC that validates MP

TODO:
Implement cubical type theory in this model

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 53 / 54

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot (INRIA, Gallinette team) All your base categories are belong to us 31/08/2020 54 / 54

