Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary
000	000	00	00	00	0	00000	00

Module Theory and Query Processing

Fritz Henglein and Mikkel Kragh Mathiesen DIKU, University of Copenhagen

8th Workshop on Mathematically Structured Functional Programming (MSFP) 2020-09-01

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary		
•00	000	00	00		0	00000	00		
Triangle queries									

- How many reference triangles are there on Wikipedia?
 A references B, which references C, which references A.
 Experiment (Mathiesen, 2016):
 - Input: 335730 reference pairs between Wikipedia pages.
 - MySQL: SQL join query, in-memory database, query optimization, indexing
 - Haskell: 3 pairwise join functions applied (A with B, B with C, C with A), no preprocessing

Implementation	Execution time (sec)
MySQL	6540
Haskell	

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary		
000	000	00	00		O	00000	00		
Triangle queries									

• How many reference triangles are there on Wikipedia?

• A references B, which references C, which references A. Experiment (Mathiesen, 2016):

- Input: 335730 reference pairs between Wikipedia pages.
- MySQL: SQL join query, IMDB, query optimization, indexing
- Haskell: 3 pairwise join functions applied (A with B, B with C, C with A), no preprocessing

Implementation	Execution time (sec)
MySQL	6540
Haskell	4

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary
000	000	00	00	00	0	00000	00
Strateg	5y						

- Consider a classic problem, say query processing
- Forsake the old ways (relational algebra, SQL, etc.)
- Take an algebraic approach (modules)
- Sprinkle category theory on top
- • •
- Profit: generalise previous results, generate new results

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary		
000	●○○	00	00	00	0	00000	00		
Modules									

A module ${\mathcal V}$ over commutative ring ${\mathcal K}$ consists of

- ${\rm \bullet} \ A \ set \ |{\cal V}|.$
- \bullet An element $\mathbf{0}_{\mathcal{V}}:|\mathcal{V}|$
- An operation $+: |\mathcal{V}| \times |\mathcal{V}| \rightarrow |\mathcal{V}|$
- An operation $\cdot: |\mathcal{K}| \times |\mathcal{V}| \to |\mathcal{V}|$

such that

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary
000	○●○	00	00		0	00000	00
Linear	Maps						

A linear map $f: \mathcal{U} \to \mathcal{V}$ respects the module structure:

$$f(x+y) = f(x) + f(y)$$
$$f(\alpha x) = \alpha f(x)$$

A bilinear map $f : \mathcal{U}_1 \times \mathcal{U}_2 \to \mathcal{V}$ is linear in each argument:

$$f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y)$$

$$f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2)$$

$$f(\alpha x, y) = \alpha f(x, y)$$

$$f(x, \alpha y) = \alpha f(x, y)$$

<ロト < 母 ト < 臣 ト < 臣 ト 三 三 の < ()</p>

Modules over \mathcal{K} with linear maps form a category.

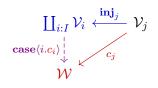
Introduction 000	Modules 00●	Coproducts 00	Polysets 00	Tensor Products	Query Processing 0	Joins 00000	Summary 00	
Basic Modules								

- The trivial module $\{0\}$ with only a zero element.
- The ring \mathcal{K} is a module.
- $\bullet\,$ Linear maps $\mathcal{U} \to \mathcal{V}$ form a module with pointwise operations.

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

Introduction 000	Modules 000	Coproducts • 0	Polysets 00	Tensor Products	Query Processing 0	Joins 00000	2	
<u> </u>								

Coproducts: Universal property



▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ○ ○ ○ ○ ○ ○

Write:

•
$$\mathcal{V}_1 \oplus \mathcal{V}_2 = \coprod_{i:\{1,2\}} \mathcal{V}_i$$
,
• $x_1 \oplus x_2 = \mathbf{inj}_1(x_1) + \mathbf{inj}_2(x_2)$.

Conrodu	Lotor N	latural I		abianaa			
Introduction 000	Modules 000	Coproducts O•	2	Tensor Products 00	Query Processing 0	Joins 00000	2

Coproducts: Natural Isomorphisms

$$\begin{array}{rcl}
\prod_{0} \mathcal{V} &\cong \{0\} \\
\prod_{1} \mathcal{V} &\cong \mathcal{K} \\
\prod_{I+J} \mathcal{V} &\cong & \prod_{I} \mathcal{V} \oplus \prod_{J} \mathcal{V} \\
\prod_{I \times J} \mathcal{V} &\cong & \prod_{I} \prod_{J} \mathcal{V}
\end{array}$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

This is precisely the structure of generic tries.

	Modules 000	2	Query Processing 0	Joins 00000	2

Polysets: Universal property

Let
$$\mathcal{K} = \mathbb{Z}$$
.
 $|\mathbf{P}[B]| \xleftarrow{[\cdot]}{f} B$ $|\operatorname{ext}\langle b.f(b)\rangle| \downarrow f$ $|\mathcal{W}|$

We have $\mathbf{P}[B] \cong \coprod_B \mathbb{Z}$.

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary
000	000	00	⊙●		O	00000	00
Polyset	ts: Pro	grammi	ng				

• Elements are polysets: finite sets

$$\{b_1^{(k_1)}, \dots, b_m^{(k_m)}\} = k_1 \cdot [b_1] + \dots + k_m \cdot [b_m]$$

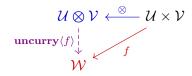
where $b_1, \ldots, b_m \in B$ and each element carries a *multiplicity* $0 \neq k_i \in \mathbb{Z}$.

• All unlisted $b \in B$ implicitly have multiplicity 0.

• Application of $f = \mathbf{ext} \langle b.v_b \rangle$ to polyset:

$$f(k_1 \cdot [b_1] + \ldots + k_m \cdot [b_m]) = k_1 \cdot v_{b_1} + \ldots + k_m \cdot v_{b_m}$$

Introduction		Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary
000		00	00	●0	0	00000	00
Tensor	Produ	cts (Pro	operty)				



- Any $x : \mathcal{U} \otimes \mathcal{V}$ can be thought of as $y_1 \otimes z_1 + \ldots + y_n \otimes z_n$ where $y_i : \mathcal{U}$ and $z_i : \mathcal{V}$.
- Mapping out can be done by pattern matching:

$$f(y \otimes z) = E \quad \rightsquigarrow \quad f = \mathbf{uncurry} \langle \lambda y. \lambda z. E \rangle$$

- No non-zero natural map $\mathcal{U} \otimes \mathcal{V} \to \mathcal{U}$, but $\mathcal{U} \otimes \mathbf{P}[B] \to \mathcal{U}$ is possible.
- Functorial action is $(f \otimes g)(y \otimes z) = f(y) \otimes g(z)$.

Introduction 000	Modules 000	Coproducts 00	Polysets 00	Tensor Products	Query Processing •	Joins 00000	2	
\sim			1 1.	c .				

Query processing via multilinear functions

- Union, difference, selection and projection are *linear*.
- Cartesian product is *bilinear*.
- Equi-joins are *bilinear*.
- Aggregation is *linear* if the aggregation function is linear. Idea:
 - Interpret query functions as (multi)linear maps over *polysets* (= fast).
 - Add nonlinear (= expensive) conversions to multisets (raise multiplicity to ≥ 0) and sets (lower multiplicity to ≤ 1) only where needed.

Joins (Efficient Implementation)

$$\begin{aligned} \mathbf{index}\langle f \rangle : \mathbf{P}[B] \to \coprod_A \mathbf{P}[B] \\ \mathbf{index}\langle f \rangle([b]) = \mathbf{inj}_{f(b)}([b]) \end{aligned}$$

flatten : $\coprod_A \mathcal{V} \to \mathcal{V}$ flatten $(inj_i(x)) = x$

 $\mathbf{merge}\langle I\rangle:(\coprod_A\mathcal{U})\otimes(\coprod_A\mathcal{V})\to\coprod_A(\mathcal{U}\otimes\mathcal{V})$

 $(f \bowtie g) = \mathbf{flatten} \circ \mathbf{merge} \langle I \rangle \circ (\mathbf{index} \langle f \rangle \otimes \mathbf{index} \langle g \rangle)$

Introduction 000	Modules 000	Coproducts 00	Polysets 00	Tensor Products 00	Query Processing 0	Joins 0●000	Summary 00	
Joins (N	Mergin	g)						

$$\alpha: \coprod_{A_1+A_2} \mathcal{V} \cong (\coprod_{A_1} \mathcal{V}) \oplus (\coprod_{A_2} \mathcal{V})$$
$$\beta: \coprod_{A_1 \times A_2} \mathcal{V} \cong (\coprod_{A_1} \coprod_{A_2} \mathcal{V})$$

$$\begin{split} \mathbf{merge} \langle \mathbb{Z} \rangle &= \mathbf{intmerge} \\ \mathbf{merge} \langle A_1 + A_2 \rangle &= \alpha^{-1} \circ (\mathbf{merge} \langle A_1 \rangle \oplus \mathbf{merge} \langle A_2 \rangle) \circ (\alpha \otimes \alpha) \\ \mathbf{merge} \langle A_1 \times A_2 \rangle &= \beta^{-1} \circ \coprod_{A_1} (\mathbf{merge} \langle A_2 \rangle) \circ \mathbf{merge} \langle A_1 \rangle \circ (\beta \otimes \beta) \end{split}$$

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary
000	000	00	00		0	00●00	00
Joins (Efficier	ncy)					

- merge runs in linear time if intmerge does.
- Size of output representation is linear due to symbolic tensor products.

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary
000	000	00	00	00	0	000●0	00
Three \	Nay Jo	oins (Me	erging)				

For convenience define:

$$\triangleright : (\coprod_A \mathcal{U}) \otimes (\mathcal{U} \to \mathcal{V}) \to \coprod_A \mathcal{V}$$
$$x \triangleright f = (\coprod_A f)(x)$$

$$\mathbf{merge}' \langle A_1, A_2, A_3 \rangle (x \otimes y \otimes z) \\ = \mathbf{merge} \langle A_1 \rangle (x \otimes y) \\ \triangleright \lambda(x' \otimes y') \cdot \mathbf{merge} \langle A_2 \rangle (x' \otimes z) \\ \triangleright \lambda(x'' \otimes z') \cdot \mathbf{merge} \langle A_3 \rangle (y' \otimes z') \\ \triangleright \lambda(y'' \otimes z'') \cdot x'' \otimes y'' \otimes z'' \\ \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary
000	000	00	00		0	0000●	00
Three	Way Jo	oins (Eff	iciency	/)			

- For inputs all of size n, merge' runs in time $O(n\sqrt{n})$.
- In general, it is worst-case optimal.
- Practical advantage, especially for cyclic joins: 4 seconds versus 1 hour 49 minutes for MySQL.

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary
000	000	00	00		0	00000	●0
Summa	ary						

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Categorical development of linear algebra.
- Connection with databases and queries.
- Efficient data representations.
- An efficient join algorithm.

Introduction	Modules	Coproducts	Polysets	Tensor Products	Query Processing	Joins	Summary
000	000	00	00	00	0	00000	00

Linear algebra as a query processing language:

- Quite expressive.
- Functorial and natural constructions.
- Symbolic representations, especially tensor products.

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト ク Q (~

Efficient joins.