
Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Module Theory and Query Processing

Fritz Henglein and Mikkel Kragh Mathiesen
DIKU, University of Copenhagen

8th Workshop on Mathematically Structured Functional
Programming (MSFP)

2020-09-01

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Triangle queries

How many reference triangles are there on Wikipedia?

A references B, which references C, which references A.

Experiment (Mathiesen, 2016):

Input: 335730 reference pairs between Wikipedia pages.

MySQL: SQL join query, in-memory database, query
optimization, indexing

Haskell: 3 pairwise join functions applied (A with B, B with
C, C with A), no preprocessing

Implementation Execution time (sec)

MySQL 6540
Haskell

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Triangle queries

How many reference triangles are there on Wikipedia?

A references B, which references C, which references A.

Experiment (Mathiesen, 2016):

Input: 335730 reference pairs between Wikipedia pages.

MySQL: SQL join query, IMDB, query optimization, indexing

Haskell: 3 pairwise join functions applied (A with B, B with
C, C with A), no preprocessing

Implementation Execution time (sec)

MySQL 6540
Haskell 4

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Strategy

Consider a classic problem, say query processing

Forsake the old ways (relational algebra, SQL, etc.)

Take an algebraic approach (modules)

Sprinkle category theory on top

· · ·
Profit: generalise previous results, generate new results

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Modules

A module V over commutative ring K consists of

A set |V|.
An element 0V : |V|
An operation + : |V| × |V| → |V|
An operation · : |K| × |V| → |V|

such that

0V + x = x (zero identity)

(x+ y) + z = x+ (y + z) (associativity)

x+ y = y + x (commutativity)

1K · x = x (scalar identity)

(αβ) · x = α · (β · x) (associativity)

(α+ β) · x = α · x+ β · x (distributivity)

α · (x+ y) = α · x+ α · y (distributivity)

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Linear Maps

A linear map f : U → V respects the module structure:

f(x+ y) = f(x) + f(y)

f(αx) = αf(x)

A bilinear map f : U1 × U2 → V is linear in each argument:

f(x1 + x2, y) = f(x1, y) + f(x2, y)

f(x, y1 + y2) = f(x, y1) + f(x, y2)

f(αx, y) = αf(x, y)

f(x, αy) = αf(x, y)

Modules over K with linear maps form a category.

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Basic Modules

The trivial module {0} with only a zero element.

The ring K is a module.

Linear maps U → V form a module with pointwise operations.

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Coproducts: Universal property

∐
i:I Vi Vj

W

injj

case〈i.ci〉 cj

Write:

V1 ⊕ V2 =
∐

i:{1,2} Vi,
x1 ⊕ x2 = inj1(x1) + inj2(x2).

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Coproducts: Natural Isomorphisms

∐
0

V ∼= {0}∐
1

V ∼= K∐
I+J

V ∼=
∐
I

V ⊕
∐
J

V∐
I×J
V ∼=

∐
I

∐
J

V

This is precisely the structure of generic tries.

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Polysets: Universal property

Let K = Z.

|P[B]| B

|W|

[·]

|ext〈b.f(b)〉|
f

We have P[B] ∼=
∐

B Z.

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Polysets: Programming

Elements are polysets: finite sets

{b(k1)1 , . . . , b(km)
m } = k1 · [b1] + . . .+ km · [bm]

where b1, . . . , bm ∈ B and each element carries a multiplicity
0 6= ki ∈ Z.

All unlisted b ∈ B implicitly have multiplicity 0.

Application of f = ext〈b.vb〉 to polyset:

f(k1 · [b1] + . . .+ km · [bm]) = k1 · vb1 + . . .+ km · vbm

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Tensor Products (Property)

U ⊗ V U × V

W

⊗

uncurry〈f〉
f

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Tensor Products (Programming)

Any x : U ⊗ V can be thought of as y1 ⊗ z1 + . . .+ yn ⊗ zn
where yi : U and zi : V.

Mapping out can be done by pattern matching:

f(y ⊗ z) = E f = uncurry〈λy.λz.E〉

No non-zero natural map U ⊗ V → U , but U ⊗ P[B]→ U is
possible.

Functorial action is (f ⊗ g)(y ⊗ z) = f(y)⊗ g(z).

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Query processing via multilinear functions

Union, difference, selection and projection are linear.

Cartesian product is bilinear.

Equi-joins are bilinear.

Aggregation is linear if the aggregation function is linear.

Idea:

Interpret query functions as (multi)linear maps over polysets
(= fast).

Add nonlinear (= expensive) conversions to multisets (raise
multiplicity to ≥ 0) and sets (lower multiplicity to ≤ 1) only
where needed.

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Joins (Efficient Implementation)

index〈f〉 : P[B]→
∐

A P[B]

index〈f〉([b]) = injf(b)([b])

flatten :
∐

A V → V
flatten(inji(x)) = x

merge〈I〉 : (
∐

A U)⊗ (
∐

A V)→
∐

A(U ⊗ V)

(f ./ g) = flatten ◦merge〈I〉 ◦ (index〈f〉⊗ index〈g〉)

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Joins (Merging)

α :
∐

A1+A2
V ∼= (

∐
A1
V)⊕ (

∐
A2
V)

β :
∐

A1×A2
V ∼= (

∐
A1

∐
A2
V)

merge〈Z〉 = intmerge

merge〈A1 +A2〉 = α−1 ◦ (merge〈A1〉⊕ merge〈A2〉) ◦ (α⊗ α)

merge〈A1 ×A2〉 = β−1 ◦
∐

A1
(merge〈A2〉) ◦merge〈A1〉 ◦ (β ⊗ β)

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Joins (Efficiency)

merge runs in linear time if intmerge does.

Size of output representation is linear due to symbolic tensor
products.

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Three Way Joins (Merging)

For convenience define:

. : (
∐

A U)⊗ (U → V)→
∐

A V
x . f = (

∐
A f)(x)

merge′〈A1, A2, A3〉(x⊗ y ⊗ z)
= merge〈A1〉(x⊗ y)

. λ(x′ ⊗ y′).merge〈A2〉(x′ ⊗ z)
. λ(x′′ ⊗ z′).merge〈A3〉(y′ ⊗ z′)

. λ(y′′ ⊗ z′′).x′′ ⊗ y′′ ⊗ z′′

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Three Way Joins (Efficiency)

For inputs all of size n, merge′ runs in time O(n
√
n).

In general, it is worst-case optimal.

Practical advantage, especially for cyclic joins: 4 seconds
versus 1 hour 49 minutes for MySQL.

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Summary

Categorical development of linear algebra.

Connection with databases and queries.

Efficient data representations.

An efficient join algorithm.

Introduction Modules Coproducts Polysets Tensor Products Query Processing Joins Summary

Linear algebra as a query processing language:

Quite expressive.

Functorial and natural constructions.

Symbolic representations, especially tensor products.

Efficient joins.

	Introduction
	Modules
	Coproducts
	Polysets
	Tensor Products
	Query Processing
	Joins
	Summary

