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Triangle queries

How many reference triangles are there on Wikipedia?

A references B, which references C, which references A.

Experiment (Mathiesen, 2016):

Input: 335730 reference pairs between Wikipedia pages.

MySQL: SQL join query, in-memory database, query
optimization, indexing

Haskell: 3 pairwise join functions applied (A with B, B with
C, C with A), no preprocessing

Implementation Execution time (sec)

MySQL 6540
Haskell
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Triangle queries

How many reference triangles are there on Wikipedia?

A references B, which references C, which references A.

Experiment (Mathiesen, 2016):

Input: 335730 reference pairs between Wikipedia pages.

MySQL: SQL join query, IMDB, query optimization, indexing

Haskell: 3 pairwise join functions applied (A with B, B with
C, C with A), no preprocessing

Implementation Execution time (sec)

MySQL 6540
Haskell 4
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Strategy

Consider a classic problem, say query processing

Forsake the old ways (relational algebra, SQL, etc.)

Take an algebraic approach (modules)

Sprinkle category theory on top

· · ·
Profit: generalise previous results, generate new results
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Modules

A module V over commutative ring K consists of

A set |V|.
An element 0V : |V|
An operation + : |V| × |V| → |V|
An operation · : |K| × |V| → |V|

such that

0V + x = x (zero identity)

(x+ y) + z = x+ (y + z) (associativity)

x+ y = y + x (commutativity)

1K · x = x (scalar identity)

(αβ) · x = α · (β · x) (associativity)

(α+ β) · x = α · x+ β · x (distributivity)

α · (x+ y) = α · x+ α · y (distributivity)
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Linear Maps

A linear map f : U → V respects the module structure:

f(x+ y) = f(x) + f(y)

f(αx) = αf(x)

A bilinear map f : U1 × U2 → V is linear in each argument:

f(x1 + x2, y) = f(x1, y) + f(x2, y)

f(x, y1 + y2) = f(x, y1) + f(x, y2)

f(αx, y) = αf(x, y)

f(x, αy) = αf(x, y)

Modules over K with linear maps form a category.
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Basic Modules

The trivial module {0} with only a zero element.

The ring K is a module.

Linear maps U → V form a module with pointwise operations.
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Coproducts: Universal property

∐
i:I Vi Vj

W

injj

case〈i.ci〉 cj

Write:

V1 ⊕ V2 =
∐

i:{1,2} Vi,
x1 ⊕ x2 = inj1(x1) + inj2(x2).
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Coproducts: Natural Isomorphisms

∐
0

V ∼= {0}∐
1

V ∼= K∐
I+J

V ∼=
∐
I

V ⊕
∐
J

V∐
I×J
V ∼=

∐
I

∐
J

V

This is precisely the structure of generic tries.
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Polysets: Universal property

Let K = Z.

|P[B]| B

|W|

[·]

|ext〈b.f(b)〉|
f

We have P[B] ∼=
∐

B Z.
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Polysets: Programming

Elements are polysets: finite sets

{b(k1)1 , . . . , b(km)
m } = k1 · [b1] + . . .+ km · [bm]

where b1, . . . , bm ∈ B and each element carries a multiplicity
0 6= ki ∈ Z.

All unlisted b ∈ B implicitly have multiplicity 0.

Application of f = ext〈b.vb〉 to polyset:

f(k1 · [b1] + . . .+ km · [bm]) = k1 · vb1 + . . .+ km · vbm
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Tensor Products (Property)

U ⊗ V U × V

W

⊗

uncurry〈f〉
f
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Tensor Products (Programming)

Any x : U ⊗ V can be thought of as y1 ⊗ z1 + . . .+ yn ⊗ zn
where yi : U and zi : V.

Mapping out can be done by pattern matching:

f(y ⊗ z) = E  f = uncurry〈λy.λz.E〉

No non-zero natural map U ⊗ V → U , but U ⊗ P[B]→ U is
possible.

Functorial action is (f ⊗ g)(y ⊗ z) = f(y)⊗ g(z).
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Query processing via multilinear functions

Union, difference, selection and projection are linear.

Cartesian product is bilinear.

Equi-joins are bilinear.

Aggregation is linear if the aggregation function is linear.

Idea:

Interpret query functions as (multi)linear maps over polysets
(= fast).

Add nonlinear (= expensive) conversions to multisets (raise
multiplicity to ≥ 0) and sets (lower multiplicity to ≤ 1) only
where needed.
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Joins (Efficient Implementation)

index〈f〉 : P[B]→
∐

A P[B]

index〈f〉([b]) = injf(b)([b])

flatten :
∐

A V → V
flatten(inji(x)) = x

merge〈I〉 : (
∐

A U)⊗ (
∐

A V)→
∐

A(U ⊗ V)

(f ./ g) = flatten ◦merge〈I〉 ◦ (index〈f〉⊗ index〈g〉)
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Joins (Merging)

α :
∐

A1+A2
V ∼= (

∐
A1
V)⊕ (

∐
A2
V)

β :
∐

A1×A2
V ∼= (

∐
A1

∐
A2
V)

merge〈Z〉 = intmerge

merge〈A1 +A2〉 = α−1 ◦ (merge〈A1〉⊕ merge〈A2〉) ◦ (α⊗ α)

merge〈A1 ×A2〉 = β−1 ◦
∐

A1
(merge〈A2〉) ◦merge〈A1〉 ◦ (β ⊗ β)
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Joins (Efficiency)

merge runs in linear time if intmerge does.

Size of output representation is linear due to symbolic tensor
products.
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Three Way Joins (Merging)

For convenience define:

. : (
∐

A U)⊗ (U → V)→
∐

A V
x . f = (

∐
A f)(x)

merge′〈A1, A2, A3〉(x⊗ y ⊗ z)
= merge〈A1〉(x⊗ y)

. λ(x′ ⊗ y′).merge〈A2〉(x′ ⊗ z)
. λ(x′′ ⊗ z′).merge〈A3〉(y′ ⊗ z′)

. λ(y′′ ⊗ z′′).x′′ ⊗ y′′ ⊗ z′′
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Three Way Joins (Efficiency)

For inputs all of size n, merge′ runs in time O(n
√
n).

In general, it is worst-case optimal.

Practical advantage, especially for cyclic joins: 4 seconds
versus 1 hour 49 minutes for MySQL.
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Summary

Categorical development of linear algebra.

Connection with databases and queries.

Efficient data representations.

An efficient join algorithm.
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Linear algebra as a query processing language:

Quite expressive.

Functorial and natural constructions.

Symbolic representations, especially tensor products.

Efficient joins.


	Introduction
	Modules
	Coproducts
	Polysets
	Tensor Products
	Query Processing
	Joins
	Summary

