
Efficient lambda encodings for Mendler-style

coinductive types in Cedille

Chris Jenkins, Aaron Stump, Larry Diehl

August 30, 2020

University of Iowa, Dept. of Computer Science

Introduction

Coinductive types and their lambda encodings

• Coinductive (coalgebraic) types classify (possibily) infinite objects.

They come with

• Destructors for making finite observations

• Generators for their production (corecursion schemes)

• And we often desire productivity for these corecursion

schemes (i.e., all finite observations are well-defined)

• Lambda encodings are an identification of the codatatype with a

particular corecursion scheme

• Codata are lambda expressions

• Types defined impredicatively (“impredicative encodings”)

• Productivity for a given scheme comes for free if the corresponding

encoding is definable in a total type theory

Why not adopt encodings where this matters? (total FP, ITPs)

1

Lambda encodings: some difficulties

Historically, lambda encodings for inductive types faced difficulties

(efficiency and logical expressivity). Similarly for coinductive types.

Efficiency of corecursion for streams (in # of observations)

• Church: constructors incur linear overhead

Constructors trigger re-generation of codata

• Parigot: flat linear overhead

Additional case distinction for each observation

Overhead can be much worse for other coinductive types. . .

2

Datatypes as primitives

Inefficiency, and the lack of (co)induction in CC (logical

expressivity), motivates the development of the calculus of

(co)inductive constructions (CIC), where primitive (co)inductive

datatypes are added to the theory.

Primitive datatypes with induction swell the TCB (positivity

checking, possibly termination checking). Support for more

expressive (co)recursion schemes may require further changes to

the meta-theory.

3

Lambda encodings: some remedies

CDLE

The calculus of dependent lambda eliminations (CDLE) is a

formally small extension of Curry-style CC that addresses the

foregoing issues for lambda encodings directly

• induction is derivable generically for many encodings

• it possible to define efficient encodings for inductive types

Cedille is a higher-level language with special syntax for inductive

types elaborated to lambda terms in CDLE.

What about coinductive types?

4

Lambda encodings: some remedies

CDLE

The calculus of dependent lambda eliminations (CDLE) is a

formally small extension of Curry-style CC that addresses the

foregoing issues for lambda encodings directly

• induction is derivable generically for many encodings

• it possible to define efficient encodings for inductive types

Cedille is a higher-level language with special syntax for inductive

types elaborated to lambda terms in CDLE.

What about coinductive types?

4

This talk

A Mendler-style encoding for codata in CDLE that is

• Generic: works for any positive datatype signature

• Efficient: no penalty for constructors

• Expressive: supports a combined course-of-values coiteration and

primitive corecursion scheme

Missing: true coinduction (bisimilarity ⇒ equality), with a counter-result

wrt CDLE’s primitive equality type. Indexed corecursion for reasoning is

supported (see the paper).

5

Focus of the talk

Focus: How we guarantee efficiency for just the primitive

corecursion scheme.

• How the Mendler-style helps

• Monotone fixed point types (Matthes, 1998)

• Proof-irrelevant type inclusions (CDLE)

6

Mendler-style schemes for

corecursion

What are “Mendler-style” corecursion schemes

For every “classic” structured corecursion scheme, there is an equivalent

Mendler-style scheme

Advantages of the Mendler-style

• More idiomatic for FPers

Explicit corecursive calls, like general corecursion

• Avoids intermediate structures in more complex schemes

No build up / tear down assists in efficiency gain

7

Coiteration (streams)

Classic

h : S → A t : S → S
coit h t : S → Stream A

head (coit h t s) h s

tail (coit h t s) coit h t (t s)

Conceptually: t : S → S is a “state transition”

Mendler

h : S → A t : ∀R.(S → R) → S → R

mcoit h t : S → Stream A

head (mcoit h t s) h t

tail (mcoit h t s) t (mcoit h t)︸ ︷︷ ︸
R:=Stream A

s

Conceptually: t : ∀R.(S → R) → S → R is a “generator transformer”

8

Primitive corecursion (streams)

“Short-circuit” generation by returning a pre-made stream

Classic

h : S → A t : S → Stream A+ S

corec h t : S → Stream A

head (corec h t s) h s

tail (corec h t s) case (t s) of in1(x) ⇒ x | in2(y) ⇒ corec h t y

Observations require additional case distinction

Mendler

h : S → A t : ∀R.(Stream A → R) → (S → R) → S → R

mcorec h t : S → Stream A

head (mcorec h t s) h s

tail (mcorec h t s) t (λ x . x)︸ ︷︷ ︸
R:=Stream A

(mcorec h t) s

Additional β-redex can be removed in CDLE 9

Monotone recursive types and proof

irrelevant type inclusions in CDLE

Review: recursive types

The impredicative encoding obtained from a direct reading of mcorec

requires recursive types.

h : S → A t : ∀R.(Stream A → R) → (S → R) → S → R

mcorec h t : S → Stream A

Recursive types

For a type scheme F , a recursive type µF is one such that:

• exists roll : F (µF)→ µF

• and exists unroll : µF → F (µF)

• such that unroll (roll t) reduces to t (β-law)

10

Positive recursive types

Unrestricted recursive types lead to non-termination, with the

culprits schemes F with negative occurrences of their type

argument.

Can use syntactic notion of positivity to recover termination, or. . .

Monotone fixedpoint types

• f monotone iff ∀x , y .x ≤ y =⇒ f (x) ≤ f (y)

• Generalize monotonicity to type theory

Need to interpret ≤, =⇒

11

Representing monotonicity

Can interpret monotonicity in System F, but for recursive types

this leads us back to Church encodings (β-law not satisfied).

CDLE twist: proof-irrelevant type inclusions

Preorder s ≤ t ∀x , y .x ≤ y =⇒ f (x) ≤ f (y)

System F S → T ∀X ,Y .(X → Y)→ F X → F Y

CDLE Cast S T ∀X ,Y .Cast X Y ⇒ Cast (F X) (F Y)

12

Erasure and irrelevance in CDLE

• CDLE is Curry-style: type annotations are external to the “real”

term language (untyped lambda calculus) and are all erased

• Definitional equality is “up to erasure”

|Λ X . λ x :X . x | = λ x . x = |λ x :T . x |

• Term arguments to functions can also be irrelevant

• t : T ′ ⇒ T means t is a function taking a T ′ argument, but

the T it returns does not depend on the choice of this

argument

• for t ′ : T ′, application t -t ′ : T , and |t -t ′| = |t|

13

Proof irrelevant type inclusions

Type inclusions Cast S T are a derived notion in CDLE.

For brevity they are presented axiomatically (full defs. in appendix).

Cast S T (elimination, erasure)

c : Cast S T
elimCast -c : S → T |elimCast -c | = λ x . x

Takeaway: type inclusions are computationally irrelevant!

14

Monotonicity

Mono F =df ∀X ,Y .Cast X Y ⇒ Cast (F X) (F Y)

We can derive

Mono F (elimination, erasure)

m : Mono F c : Cast S T
elimMono -m -c : F S → F T |elimMono -m -c | = λ x . x

Takeaway: monotonicity witnesses are computationally irrelevant!

15

Recursive types

Rec (constructor, destructor, erasure)

m : Mono F
roll -m : F (Rec F)→ Rec F |roll -m| = λ x . x

m : Mono F
unroll -m : Rec F → F (Rec F) |unroll -m| = λ x . x

• roll and unroll are part of a two-way type inclusion between

F (Rec F) and Rec F

• β-law easily satisfied!

16

The generic encoding

Generic variant Mendler encoding

F : ?→ ? and monoF : Mono F are parameters to the development

For simplicity, the below encoding has support for CoV coiteration

removed (see paper for full definition).

Generic codatatype Nu

CoAlg S C =df ∀R. (Cast C R)⇒ (S → R)→ S → F R

Nu =df Rec λC .∃X .X × CoAlg X C︸ ︷︷ ︸
positive in C

• S is the “state space”, C is the fixedpoint parameter

• Existential encoding is standard for codata

(Church: ∃X .X × (X → F X))

17

Efficient destructor

The type scheme in the definition of Nu is positive, so we can use

roll and unroll to define the generator and destructor

satisfying:

Generator and destructor

c : CoAlg S Nu

unfoldM c : S → Nu

outM (unfoldM c s) c

erased!︷ ︸︸ ︷
-castRefl︸ ︷︷ ︸
R:=Nu

(unfoldM c) s

No overhead for primitive corecursion!

18

Efficient codata constructor

inM : F Nu→ Nu

=df unfoldM (F Nu) Λ R.Λ c . λ g .

F Nu→F R︷ ︸︸ ︷
elimMono -monoF -c

Ordinarily, use g : F Nu→ R to corecursively re-generate. But

• c : Cast Nu R and monoF : Mono F

• so |elimMono -monoF -c | = λ x . x

Consequently, outM (inM t) t for all t

• No re-generation of codata (Church)

• No traversal over F with fmap (Church and Parigot)

⇒ no penalty for constructors!

19

Conclusion

Summary and proviso

• Generic derivation of codata in CDLE supporting an

expressive corecursion scheme efficiently.

• Required a different approach than used for efficient inductive

types – monotone recursive types á la Matthes

• Termination guarantee in CDLE is somewhat subtle

• Holds for closed terms which can be assigned a function type

This includes all (closed) (co)data. Computing with open

terms is in general unsafe

• The features used to guarantee efficiency contribute to the

proviso

20

Future work

• Ongoing work on an encoding with coinduction “up to” an

equivalence relation derived from binary parametricty

Rather than CDLE’s primitive equality type (used in the

counter-example)

• Design of a nice surface-language syntax for codata

(copattern matching, coercive subtyping using type inclusions)

Mendler-style formulation helps bridge the gap between syntax

and semantics: productivity checking reduced to type checking

while maintaining a familiar style of explicit corecursive calls

21

Thanks!

22

	Introduction
	Mendler-style schemes for corecursion
	Monotone recursive types and proof irrelevant type inclusions in CDLE
	The generic encoding
	Conclusion

