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The record update problem

Lenses are very powerful and useful things in FP. They represent
“first class” fields for a data structure.
If we have a User , which has a Name , which consists of first
name (a String ) and some other data:
data User = MkUser { userName :: Name , ... }
data Name = MkName { firstName :: String , ... }

then to update user’s first name we need to see some trouble.



Lenses offer a solution
If we use lenses
userNameL :: Lens User Name
firstNameL :: Lens Name String

which compose
userNameL % firstNameL :: Lens User String

Then using set operation
set :: Lens a b -> b -> a -> a

we can set new first name concisely:
setFirstName :: String -> User -> User
setFirstName = set (userNameL % firstNameL)



Proving facts about lenses is not simple. We usually need
functional extensionality and some proof irrelevance.
Homotopy Type Theory (HoTT) gives a new perspective to look
at things. And Cubical Agda allows to play with the ideas.



Lenses are not the only optics out there



Isomorphisms



Isomorphism

A function f : A→ B is an isomorphism, if there exists
g : B→ A, such that f ◦ g = 1B and g ◦ f = 1A.
It is an easy exercise to show that inverse g is unique if it exists,
so we don’t need to require that explicitly.
However, together with equality proofs, a quasi-inverse of f

qinv f :=
∑
g:B→A

(f ◦ g = 1B)× (g ◦ f = 1A)

is not unique (we don’t have UIP).



Equivalence
A function f : A→ B is an equivalence if for all b : B the fibers of
f over b are contractible.

isEquiv f :=
∏
b:B

isContr (fiberf b)

A ' B :=
∑
f :A→B

isEquiv f

where

isContr A :=
∑
x:A

∏
y:A

x =A y “exists unique”

fiberf b :=
∑
a:A

f b =A a preimage of a point



Mere proposition
For all A, isEquiv A is amere proposition, which means that all
values of isEquiv A are equal. For example proving that
composition of equivalences is associative reduces to proving
that function composition is associative.

compEquiv-assoc

: {ab : A ' B} → {bc : B ' C} → {cd : C ' D}
→ compEquiv (compEquiv ab bc) cd

≡ compEquiv ab (compEquiv bc cd)

compEquiv-assoc = ΣProp≡ isPropIsEquiv refl

Note: mere propositions are normal Types, they are not in a
proof-irrelevant universe.



Prisms



Prisms

A prism from S to V consists of
I amatcher f : S→ Maybe V and
I a builder g : V → S

satisfying following laws:

MATCHBUILD ∀(v : V), f (g v) = just v
BUILDMATCH ∀(s : S), f s = just v ⇒ g v = s



Counting prisms between finite sets
[ (f , g)
| f <- gen , g <- gen
, and [ f (g v) == Just v | v <- gen ]
, and [ g v == s | s <- gen , Just v <- [f s ] ] ]

Prisms between Fin 4 and Fin 2:

There are 12 = 4!/(4− 2)!.
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Embedding
The HoTT version of injection is an embedding.
A function f : A→ B is an embedding if for all b : B the fibres of f
over b are mere propositions.

hasPropFibers f :=
∏
b:B

isProp (fiberf b)

where

isProp A :=
∏
x:A

∏
y:A

x =A y



Decidable Embedding
The isProp value tells us only that it the value is unique if it exists,
but it doesn’t give any means to construct it! We need something
stronger.
Using

isDecProp A := isProp A× (A + ¬A)

or isDecProp A := isContr A + ¬A

we can define

isBuilder g :=
∏
b:B

isDecProp (fiberg b)



Corollaries

I Every equivalence is a builder
I Builder composition is associative, . . .
I Builder uniquely determines the matcher part of a prism.

A Prism is just a decidable embedding.
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Lenses

A lens from S to V consists of
I a getter f : S→ V and
I a setter g : S→ V → S

satisfying following laws

GETPUT ∀(s : S) (v : V), f (g s v) = v
PUTGET ∀(s : S), g s (f s) = s
PUTPUT ∀(s : S) (v : V) (v′ : V), g (g s v′) v = g s v



Higher lenses

We can have different lens variants:
I barely behaving lens (GETPUT)
I well behaved lens (GETPUT + PUTGET)
I very well behaved lens (GETPUT + PUTGET + PUTPUT)
I weak lens (GETPUT and weaker notion of PUTGET and
PUTPUT)



Counting lenses between finite sets

Let’s take as a getter fst : Fin 2× Fin 2→ Fin 2

I Out of 44×2 = 66536 setter candidates:
I 256 barely behaving lenses.
I 16 weak lenses.
I 16 well behaving lenses.
I Two very well-behaved lenses:
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Counting lenses between finite sets
Let’s take as a getter fst : Fin 2× Fin 2→ Fin 2

I Out of 44×2 = 66536 setter candidates:
I 256 barely behaving lenses.
I 16 weak lenses.
I 16 well behaving lenses.
I Two very well-behaved lenses: g (x , y) v = (v , y) and

g (x , y) v = (v , y ‘xor‘ x ‘xor‘ v)
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∑

P:‖V‖→Type

∏
v:V

(fiberf v ' P|v|)



Counting lenses between finite sets
Let’s take as a getter fst : Fin 2× Fin 2→ Fin 2

I Out of 44×2 = 66536 setter candidates:
I 256 barely behaving lenses.
I 16 weak lenses.
I 16 well behaving lenses.
I Two very well-behaved lenses:

isHigherLens f :=
∑

P:‖V‖→Type

∏
v:V

(fiberf v ' P|v|)

Another problem: Multiple values for the same setter:
(const Bool, λv . . . • idEquiv) and
(const Bool, λv . . . • notEquiv).



Summary

I Prisms are simply decidable embeddings
I isDecProp is a useful concept in programming. For example
dec-≤ :

∏
n:N

∏
m:N isDecProp (n ≤ m) and

(<=?) :: Natural -> Natural -> Maybe Natural

I No satisfying results for lenses
I Getter doesn’t determine whole lens.
I isHigherLens has a "degree of freedom"
I Are weak lenses useful?



Extra slides: hasGetter

For g : S→ V → S:

hasGetter g :=
∏
s:S

isContr (fiberg s s)


