
Combining predicate transformer semantics for

effects

A case study in parsing regular languages

Anne Baanen Wouter Swierstra

Vrije Universiteit Amsterdam Utrecht University

1



Algebraic effects

Algebraic effects separate the syntax and semantics of effects.

• The syntax describes the sequencing of the primitive operations

• The semantics assigns meaning to these operations

In this work, we use a free monad to model effectful programs in Agda:

data Free (C : Set) (R : C -> Set) : Set -> Set where

Pure : a -> Free C R a

Op : (c : C) -> (k : R c -> Free C R a) -> Free C R a

2



Example: Nondeterminism

Nondet has two primitive operations:

• Choice chooses between two values

• Fail goes to a failure state and stops execution

data CNondet where

Choice : CNondet

Fail : CNondet

RNondet : CNondet -> Set

RNondet Choice = Bool

RNondet Fail = ⊥

Nondet = Free CNondet RNondet

3



Semantics for algebraic effects

Handlers give semantics for the Freemonad naturally as a fold:

handleList : Nondet a -> List a

handleList (Pure x) = [x]

handleList (Op Choice k) = k True ++ k False

handleList (Op Fail k) = []

The generic fold that computes a predicate of type Set:

[[_]] : Free C R a -> ((c : C) -> (R c -> Set) -> Set)

-> (a -> Set) -> Set

[[ Pure x ]] alg P = P x

[[ Op c k ]] alg P = alg c (λ x -> [[ k x ]] alg P)

4



Semantics for algebraic effects

Handlers give semantics for the Freemonad naturally as a fold:

handleList : Nondet a -> List a

handleList (Pure x) = [x]

handleList (Op Choice k) = k True ++ k False

handleList (Op Fail k) = []

The generic fold that computes a predicate of type Set:

[[_]] : Free C R a -> ((c : C) -> (R c -> Set) -> Set)

-> (a -> Set) -> Set

[[ Pure x ]] alg P = P x

[[ Op c k ]] alg P = alg c (λ x -> [[ k x ]] alg P)

4



Predicate transformer semantics

A predicate transformer for commands C and responses R is a function from

postconditions of type R -> Set to preconditions of type C -> Set.

If R depends on C, this becomes:

pt C R = (c : C) -> (R c -> Set) -> Set

The type of the algebra passed to [[_]] is exactly pt C R. We have

assigned predicate transformer semantics to algebraic effects.

5



Predicate transformer semantics for Nondet

For nondeterminism, there are two canonical choices of predicate

transformer semantics.

ptAll requires that all potential results satisfy the postcondition:

ptAll Fail k = ⊤

ptAll Choice k = k True ∧ k False

ptAny requires that there is at least one outcome that satisfies the

postcondition:

ptAny Fail k = ⊥

ptAny Choice k = k True ∨ k False

6



Parsing regular expressions

To illustrate these semantics, we wrote a parser. The input is a regular

expression and a String, and the output a parse tree.

data Regex : Set where

Empty : Regex

Epsilon : Regex

Singleton : Char → Regex

_ | _ : Regex → Regex → Regex

_ · _ : Regex → Regex → Regex

_ * : Regex → Regex

Tree : Regex -> Set

Tree Empty = ⊥

Tree Epsilon = ⊤

Tree (Singleton _) = Char

Tree (l | r) = Either (Tree l) (Tree r)

Tree (l · r) = Pair (Tree l) (Tree r)

Tree (r *) = List (Tree r)
7



Parsing regular expressions

We implement match as a case distinction.

match : (r : Regex) -> String -> Nondet (Tree r)

match Empty xs = Op Fail λ()

match Epsilon Nil = Pure tt

match Epsilon (_ :: _) = Op Fail λ()

match (Singleton c) xs =

if xs = [c] then Pure c else Op Fail λ()

match (l | r) xs = Op Choice (λ b ->

if b then Inl <$> match l xs else Inr <$> match r xs)

match (l · r) xs = do

(ys, zs) <- allSplits xs

(,) <$> match l ys <*> match r zs

match (r *) xs = match (Epsilon | r · (r *)) xs

Error: match (r *) xs does not terminate

8



Parsing regular expressions

We implement match as a case distinction.

match : (r : Regex) -> String -> Nondet (Tree r)

match Empty xs = Op Fail λ()

match Epsilon Nil = Pure tt

match Epsilon (_ :: _) = Op Fail λ()

match (Singleton c) xs =

if xs = [c] then Pure c else Op Fail λ()

match (l | r) xs = Op Choice (λ b ->

if b then Inl <$> match l xs else Inr <$> match r xs)

match (l · r) xs = do

(ys, zs) <- allSplits xs

(,) <$> match l ys <*> match r zs

match (r *) xs = match (Epsilon | r · (r *)) xs

Error: match (r *) xs does not terminate

8



Parsing regular expressions

We implement match as a case distinction.

match : (r : Regex) -> String -> Nondet (Tree r)

match Empty xs = Op Fail λ()

match Epsilon Nil = Pure tt

match Epsilon (_ :: _) = Op Fail λ()

match (Singleton c) xs =

if xs = [c] then Pure c else Op Fail λ()

match (l | r) xs = Op Choice (λ b ->

if b then Inl <$> match l xs else Inr <$> match r xs)

match (l · r) xs = do

(ys, zs) <- allSplits xs

(,) <$> match l ys <*> match r zs

match (r *) xs = match (Epsilon | r · (r *)) xs

Error: match (r *) xs does not terminate

8



Parsing regular expressions

We implement match as a case distinction.

match : (r : Regex) -> String -> Nondet (Tree r)

match Empty xs = Op Fail λ()

match Epsilon Nil = Pure tt

match Epsilon (_ :: _) = Op Fail λ()

match (Singleton c) xs =

if xs = [c] then Pure c else Op Fail λ()

match (l | r) xs = Op Choice (λ b ->

if b then Inl <$> match l xs else Inr <$> match r xs)

match (l · r) xs = do

(ys, zs) <- allSplits xs

(,) <$> match l ys <*> match r zs

match (r *) xs = match (Epsilon | r · (r *)) xs

Error: match (r *) xs does not terminate

8



Parsing regular expressions

We implement match as a case distinction.

match : (r : Regex) -> String -> Nondet (Tree r)

match Empty xs = Op Fail λ()

match Epsilon Nil = Pure tt

match Epsilon (_ :: _) = Op Fail λ()

match (Singleton c) xs =

if xs = [c] then Pure c else Op Fail λ()

match (l | r) xs = Op Choice (λ b ->

if b then Inl <$> match l xs else Inr <$> match r xs)

match (l · r) xs = do

(ys, zs) <- allSplits xs

(,) <$> match l ys <*> match r zs

match (r *) xs = match (Epsilon | r · (r *)) xs

Error: match (r *) xs does not terminate

8



Parsing regular expressions

We implement match as a case distinction.

match : (r : Regex) -> String -> Nondet (Tree r)

match Empty xs = Op Fail λ()

match Epsilon Nil = Pure tt

match Epsilon (_ :: _) = Op Fail λ()

match (Singleton c) xs =

if xs = [c] then Pure c else Op Fail λ()

match (l | r) xs = Op Choice (λ b ->

if b then Inl <$> match l xs else Inr <$> match r xs)

match (l · r) xs = do

(ys, zs) <- allSplits xs

(,) <$> match l ys <*> match r zs

match (r *) xs = match (Epsilon | r · (r *)) xs

Error: match (r *) xs does not terminate

8



Parsing regular expressions

We implement match as a case distinction.

match : (r : Regex) -> String -> Nondet (Tree r)

match Empty xs = Op Fail λ()

match Epsilon Nil = Pure tt

match Epsilon (_ :: _) = Op Fail λ()

match (Singleton c) xs =

if xs = [c] then Pure c else Op Fail λ()

match (l | r) xs = Op Choice (λ b ->

if b then Inl <$> match l xs else Inr <$> match r xs)

match (l · r) xs = do

(ys, zs) <- allSplits xs

(,) <$> match l ys <*> match r zs

match (r *) xs = match (Epsilon | r · (r *)) xs

Error: match (r *) xs does not terminate

8



Parsing regular expressions

For now, we will write:

match (r *) xs = Op Fail λ()

To verify our implementation, we take a specification consisting of

precondition and postcondition:

pre : Regex -> String -> Set

pre r xs = hasNo* r

post : (r : Regex) -> String -> Tree r -> Set

post r xs t = Match r xs t

And check that match refines this specification.

9



Parsing regular expressions

For now, we will write:

match (r *) xs = Op Fail λ()

To verify our implementation, we take a specification consisting of

precondition and postcondition:

pre : Regex -> String -> Set

pre r xs = hasNo* r

post : (r : Regex) -> String -> Tree r -> Set

post r xs t = Match r xs t

And check that match refines this specification.

9



Refinement calculus

A predicate transformer pt1 is refined by pt2 if pt2 satisfies more

postconditions than pt1:

_⊑_ : (pt1 pt2 : (a -> Set) -> Set) -> Set

pt1 ⊑ pt2 = ∀ P -> pt1 P -> pt2 P

S ⊑ T expresses that T is “better” than S: S can be replaced with T

everywhere, and all postconditions will still hold.

Predicate transformers are a semantic domain where programs and

specifications can be related.

[[_,_]] : (pre : Set) (post : a -> Set) -> (a -> Set) -> Set

[[ pre , post ]] P = pre ∧ ∀ x, post x -> P x

10



Refinement calculus

A predicate transformer pt1 is refined by pt2 if pt2 satisfies more

postconditions than pt1:

_⊑_ : (pt1 pt2 : (a -> Set) -> Set) -> Set

pt1 ⊑ pt2 = ∀ P -> pt1 P -> pt2 P

S ⊑ T expresses that T is “better” than S: S can be replaced with T

everywhere, and all postconditions will still hold.

Predicate transformers are a semantic domain where programs and

specifications can be related.

[[_,_]] : (pre : Set) (post : a -> Set) -> (a -> Set) -> Set

[[ pre , post ]] P = pre ∧ ∀ x, post x -> P x

10



Verification

With these ingredients, the correctness statement of match becomes:

matchSound : (r : Regex) (xs : String) ->

[[ pre r xs , post r xs ]] ⊑ [[ match r xs ]] ptAll

The proof proceeds by case distinction and is uncomplicated, until we need

to reason about the monadic bind operator _>>=_.

The missing ingredient is the rule of consequence:

consequence : ∀ pt (S : Free es a) (f : a -> Free es b) ->

[[ S >>= f ]] pt P ≡ [[ S ]] pt (λ x -> [[ f x ]] pt P)

11



Verification

With these ingredients, the correctness statement of match becomes:

matchSound : (r : Regex) (xs : String) ->

[[ pre r xs , post r xs ]] ⊑ [[ match r xs ]] ptAll

The proof proceeds by case distinction and is uncomplicated, until we need

to reason about the monadic bind operator _>>=_.

The missing ingredient is the rule of consequence:

consequence : ∀ pt (S : Free es a) (f : a -> Free es b) ->

[[ S >>= f ]] pt P ≡ [[ S ]] pt (λ x -> [[ f x ]] pt P)

11



Adding effects

The problem with match is that implementing the Kleene star also requires

the effect of general recursion.

We can add more effects to the free monad by choosing the command and

response types from a list of effect signatures:

data Free (es : List Sig) : Set -> Set where

Pure : a -> Free es a

Op : (i : mkSig C R ∈ es) (c : C)

(k : R c -> Free C R a) -> Free C R a

We will add two new effects: general recursion and parsing.

12



Adding effects

Inspired by McBride’s Turing-Completeness Totally Free, we use the Rec I O

effect to represent a recursive function of type (i : I) -> O i calling

itself. The commands are the arguments to the function and the responses

are the returned values.

Rec : (I : Set) (O : I -> Set) -> Sig

Rec I O = mkSig I O

To specify the semantics of Rec, we need an invariant of type (i : I) ->

O i -> Set, specifying which values of type O i can be returned from a

call with argument i : I.

ptRec inv i P = ∀ o -> inv i o -> P o

13



Adding effects

The Parser effect represents a stateful parser with one command: advance

the input string by one character.

Parser : Sig

Parser = mkSig ⊤ (λ _ -> Maybe Char)

Parser has stateful semantics: to return the next character, we need to

keep track of the remaining characters. The state is the extra String

arguments in ptParser.

ptParser : (Maybe Char -> String -> Set) -> String -> Set

ptParser P Nil = P Nothing Nil

ptParser P (x :: xs) = P (Just x) xs

14



Extending match

Now we can finish the definition and prove soundness unconditionally:

match (r *) = Op iRec (Epsilon | r · (r *))

matchSound : (r : Regex) (xs : String) ->

[[ ⊤ , post r xs ]] ⊑ [[ match r xs ]]

match still does not terminate if rmatches the empty string, our result is

only partial correctness.

ptRec computes the WLP: all recursive calls immediately return.

15



Extending match

Now we can finish the definition and prove soundness unconditionally:

match (r *) = Op iRec (Epsilon | r · (r *))

matchSound : (r : Regex) (xs : String) ->

[[ ⊤ , post r xs ]] ⊑ [[ match r xs ]]

match still does not terminate if rmatches the empty string, our result is

only partial correctness.

ptRec computes the WLP: all recursive calls immediately return.

15



Defining a derivative-based matcher

To guarantee termination, use recursion on xs rather than r.

The Brzozowski derivative d r /d xmatches xs iff rmatches x :: xs.

dmatch : (r : Regex) -> Free es (Tree r)

dmatch r = Op iParse

λ { (Just x) -> Op iRec (d r /d x) (integralTree r)

Nothing -> if p <- matchEpsilon r

then Pure (Sigma.fst p)

else Op iND Fail λ() }

integralTree r : tree (d r /d x) -> tree r “integrates” parse

trees.

dmatchSound : ∀ r xs -> [[ match r xs ]] ⊑ [[ dmatch r xs ]]

16



Defining a derivative-based matcher

To guarantee termination, use recursion on xs rather than r.

The Brzozowski derivative d r /d xmatches xs iff rmatches x :: xs.

dmatch : (r : Regex) -> Free es (Tree r)

dmatch r = Op iParse

λ { (Just x) -> Op iRec (d r /d x) (integralTree r)

Nothing -> if p <- matchEpsilon r

then Pure (Sigma.fst p)

else Op iND Fail λ() }

integralTree r : tree (d r /d x) -> tree r “integrates” parse

trees.

dmatchSound : ∀ r xs -> [[ match r xs ]] ⊑ [[ dmatch r xs ]]

16



Termination checking

ptRec gives weakest liberal precondition semantics. For total correctness,

we should check termination.

terminates-in f S n holds iff S terminates after calling f at most n

times.

terminates-in : (f : (i : I) -> Free (Rec I O :: es) (O i))

(S : Free (Rec I O :: es) a) → ℕ → Set

terminates-in f (Pure x) n = ⊤

terminates-in f (Op ∈Head c k) Zero = ⊥

terminates-in f (Op ∈Head c k) (Succ n) =

terminates-in pt f (f c >>= k) n

terminates-in f (Op (∈Tail i) c k) n =

pts i c (λ x -> terminates-in f (k x) n)

17



Total correctness

Partial correctness of dmatch follows from the chain of refinements:

[[ ⊤ , post r xs ]]

⊑ [[ match r xs ]]

⊑ [[ dmatch r xs ]]

⊑ [[ ⊤ , post r xs ]]

together with a proof of termination:

dmatchTerminates : (r : Regex) (xs : String) ->

terminates-in dmatch (dmatch r xs) (length xs)

18



Discussion

In our paper, we illustrate how techniques from the refinement calculus can

be used in functional programming. They provide a natural and uniform way

to reason about effects in the setting of the Freemonad.

A distinguishing characteristic of our approach is modularity: we add new

effects and semantics to the system as we need them.

Formally verified parsers have been developed before, using specialized

semantics to the domain of parsing. The modularity of predicate

transformers allow us to reason about effects uniformly.

Most existing approaches to recursion in parsers deal with termination

syntactically. Separation of syntax and semantics also cleanly separates

partial and total correctness.

19


