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Summary. We develop the basics of module theory with an emphasis on categorical constructions.
Elements of free modules have a natural interpretation as finite polysets, generalized multisets where
elements can also occur a negative or even fractional number of times. Many queries traditionally ex-
pressed in SQL correspond to multilinear maps on polysets. By employing symbolic constructors for
scalar multiplication and tensor products we obtain more compact representations that facilitate run-time
optimizations using algebraic identities and yield asymptotic speed-ups compared to the conventional
stream-of-tuples representation in database systems. In particular we show that a straightforward func-
tional join algorithm is efficient even for cyclic joins.

From sets and multisets to polysets. Traditional query processing is based on relational algebra and
SQL. In relational algebra query inputs and results are sets (elements occur 0 or 1 times) whereas SQL
uses bag semantics (elements occur zero or more times). Extensions to this model have been proposed,
such as probabilistic databases [2] (elements have real number multiplicities between 0 and 1) or prove-
nance semirings [3] (elements have multiplicities from any semiring). In this manner databases are grad-
ually progressing from set-like semantics to algebraic semantics. We propose to continue in this direction
and go to using modules over rings to harvest increased expressiveness (support for subtraction/deletion),
compact data structures and computational efficiency simultaneously facilitated by (symbolic) linear al-
gebra [5].1 The result is a theory of polysets: occurrences have multiplicities from any ring with linear
maps (homomorphisms), which turn out to be sufficient for expressing a wide variety of queries. If
and only if necessary, computationally expensive non-linear operations can be inserted in select places,
e.g. for mapping a polyset to a multiset by eliminating negative multiplicities.

Modules. The general structure is that of an '-module, a set " equipped with operations

+ : "→ "→ "

· : '→ "→ "

satisfying the usual axioms of identity, commutativity, associativity and distributivity where ' is a ring
with unity.

Compared to the usual set and multiset semantics this already gives us two new tools. Firstly, for
any element G we have its negation −G = (−1) · G. This operation takes the place of set difference in
relational algebra but has the additional advantage that updates are commutative, e.g. G + (−H) is the
same as (−H) + G.

1Most of this development is described in the second author’s thesis.
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Negative multiplicities of elements is not always desirable so we may wish to normalize the data
at specific points. If data is normalized after every update we recover the usual set- or multiset-based
semantics, whichever is desired. In this fashion query processing is not intrinsically about finite sets
(relational algebra) or multisets (SQL).

The other tool is a notation for repeated elements, so we can write e.g. 4 · G instead of G + G + G + G.
Directly using this notation as a representation we can obtain asymptotic improvements in some cases,
especially in combination with tensor products as explained later.

Universal properties. To further explore the possibilities of exploiting algebraic properties we look at
module theory through the lens of category theory using universal properties. Consider the homogeneous
coproduct

∐
- " , i.e. - copies of " . This can be seen as a mapping with finite support from the set

- into the elements of " . In particular,
∐

- ' which is the free '-module generated by - . If we have
attributes �1, . . . , �= then the free Z-module over �1×· · ·× �= serves as the domain for tables containing
these attributes. By the universal property of coproducts we get natural isomorphisms such as∐

-+.
" �

∐
-

" ⊕
∐
.

"∐
-×.

" �
∐
-

∐
.

"

In this way we precisely recover the structure of generic tries [4].
Next, we turn to tensor products which are described by their universal property relative to bilinear

maps. Specifically, bilinear maps ("1, "2) → "3 are equivalent to linear maps "1 ⊗ "2 → "3. A
symbolic tensor product constructor gives rise to a compact representation of join results since we can
represent elements of the tensor space as G ⊗ H for arbitrary tables G and H. This avoids unnecessarily
multiplying it out to the standard stream-of-tuples form used in database systems, which has a worst-
case quadratic blowup. Hence, we recover the advantages of factorized databases [1]. Additionally, a
symbolic scalar multiplication constructor provides a potentially exponentially more compact represen-
tation of tables, storing : · G instead of G + . . .+G. This is for example useful in representing the output of
projections or SQL semi-joins.

In general, by taking an algebraic perspective we can draw on a vast repository of knowledge, expos-
ing optimizations that are otherwise nonobvious, impractical or difficult to get right.

Joins. A major challenge of evaluating database queries is handling joins. Using the trie structures
derived from coproducts and symbolic tensor products we can compute simple joins in worst-case linear
time. Applying this technique to more complicated situations we get efficient joins even in more compli-
cated situations. In particular, triangle joins, which belong to the notoriously hard class of cyclic joins,
are computed in $ (= 3

2 ). This is worst-case time optimal [6] and known not to be achievable by classical
relational database systems [7].
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